Goto

Collaborating Authors

 Tremblay, Jonathan


BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects

arXiv.org Artificial Intelligence

We present a near real-time method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence, while simultaneously performing neural 3D reconstruction of the object. Our method works for arbitrary rigid objects, even when visual texture is largely absent. The object is assumed to be segmented in the first frame only. No additional information is required, and no assumption is made about the interaction agent. Key to our method is a Neural Object Field that is learned concurrently with a pose graph optimization process in order to robustly accumulate information into a consistent 3D representation capturing both geometry and appearance. A dynamic pool of posed memory frames is automatically maintained to facilitate communication between these threads. Our approach handles challenging sequences with large pose changes, partial and full occlusion, untextured surfaces, and specular highlights. We show results on HO3D, YCBInEOAT, and BEHAVE datasets, demonstrating that our method significantly outperforms existing approaches. Project page: https://bundlesdf.github.io


RGB-Only Reconstruction of Tabletop Scenes for Collision-Free Manipulator Control

arXiv.org Artificial Intelligence

We present a system for collision-free control of a robot manipulator that uses only RGB views of the world. Perceptual input of a tabletop scene is provided by multiple images of an RGB camera (without depth) that is either handheld or mounted on the robot end effector. A NeRF-like process is used to reconstruct the 3D geometry of the scene, from which the Euclidean full signed distance function (ESDF) is computed. A model predictive control algorithm is then used to control the manipulator to reach a desired pose while avoiding obstacles in the ESDF. We show results on a real dataset collected and annotated in our lab.


Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation

arXiv.org Artificial Intelligence

We present a parallelized optimization method based on fast Neural Radiance Fields (NeRF) for estimating 6-DoF pose of a camera with respect to an object or scene. Given a single observed RGB image of the target, we can predict the translation and rotation of the camera by minimizing the residual between pixels rendered from a fast NeRF model and pixels in the observed image. We integrate a momentum-based camera extrinsic optimization procedure into Instant Neural Graphics Primitives, a recent exceptionally fast NeRF implementation. By introducing parallel Monte Carlo sampling into the pose estimation task, our method overcomes local minima and improves efficiency in a more extensive search space. We also show the importance of adopting a more robust pixel-based loss function to reduce error. Experiments demonstrate that our method can achieve improved generalization and robustness on both synthetic and real-world benchmarks.


6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An Accessible Dataset and Benchmark

arXiv.org Artificial Intelligence

We present a new dataset for 6-DoF pose estimation of known objects, with a focus on robotic manipulation research. We propose a set of toy grocery objects, whose physical instantiations are readily available for purchase and are appropriately sized for robotic grasping and manipulation. We provide 3D scanned textured models of these objects, suitable for generating synthetic training data, as well as RGBD images of the objects in challenging, cluttered scenes exhibiting partial occlusion, extreme lighting variations, multiple instances per image, and a large variety of poses. Using semi-automated RGBD-to-model texture correspondences, the images are annotated with ground truth poses accurate within a few millimeters. We also propose a new pose evaluation metric called ADD-H based on the Hungarian assignment algorithm that is robust to symmetries in object geometry without requiring their explicit enumeration. We share pre-trained pose estimators for all the toy grocery objects, along with their baseline performance on both validation and test sets. We offer this dataset to the community to help connect the efforts of computer vision researchers with the needs of roboticists.


MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare

arXiv.org Artificial Intelligence

We introduce MegaPose, a method to estimate the 6D pose of novel objects, that is, objects unseen during training. At inference time, the method only assumes knowledge of (i) a region of interest displaying the object in the image and (ii) a CAD model of the observed object. The contributions of this work are threefold. First, we present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects. The shape and coordinate system of the novel object are provided as inputs to the network by rendering multiple synthetic views of the object's CAD model. Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner. Third, we introduce a large-scale synthetic dataset of photorealistic images of thousands of objects with diverse visual and shape properties and show that this diversity is crucial to obtain good generalization performance on novel objects. We train our approach on this large synthetic dataset and apply it without retraining to hundreds of novel objects in real images from several pose estimation benchmarks. Our approach achieves state-of-the-art performance on the ModelNet and YCB-Video datasets. An extensive evaluation on the 7 core datasets of the BOP challenge demonstrates that our approach achieves performance competitive with existing approaches that require access to the target objects during training. Code, dataset and trained models are available on the project page: https://megapose6d.github.io/.


Efficient Geometry-aware 3D Generative Adversarial Networks

arXiv.org Artificial Intelligence

Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using only collections of single-view 2D photographs has been a long-standing challenge. Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent; the former limits quality and resolution of the generated images and the latter adversely affects multi-view consistency and shape quality. In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations. For this purpose, we introduce an expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry. By decoupling feature generation and neural rendering, our framework is able to leverage state-of-the-art 2D CNN generators, such as StyleGAN2, and inherit their efficiency and expressiveness. We demonstrate state-of-the-art 3D-aware synthesis with FFHQ and AFHQ Cats, among other experiments.


Fast Uncertainty Quantification for Deep Object Pose Estimation

arXiv.org Artificial Intelligence

Deep learning-based object pose estimators are often unreliable and overconfident especially when the input image is outside the training domain, for instance, with sim2real transfer. Efficient and robust uncertainty quantification (UQ) in pose estimators is critically needed in many robotic tasks. In this work, we propose a simple, efficient, and plug-and-play UQ method for 6-DoF object pose estimation. We ensemble 2-3 pre-trained models with different neural network architectures and/or training data sources, and compute their average pairwise disagreement against one another to obtain the uncertainty quantification. We propose four disagreement metrics, including a learned metric, and show that the average distance (ADD) is the best learning-free metric and it is only slightly worse than the learned metric, which requires labeled target data. Our method has several advantages compared to the prior art: 1) our method does not require any modification of the training process or the model inputs; and 2) it needs only one forward pass for each model. We evaluate the proposed UQ method on three tasks where our uncertainty quantification yields much stronger correlations with pose estimation errors than the baselines. Moreover, in a real robot grasping task, our method increases the grasping success rate from 35% to 90%.


Guided Uncertainty-Aware Policy Optimization: Combining Learning and Model-Based Strategies for Sample-Efficient Policy Learning

arXiv.org Artificial Intelligence

Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state. On the other hand, reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle. In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline, while requiring minimal interactions with the environment. This is achieved by leveraging uncertainty estimates to divide the space in regions where the given model-based policy is reliable, and regions where it may have flaws or not be well defined. In these uncertain regions, we show that a locally learned-policy can be used directly with raw sensory inputs. We test our algorithm, Guided Uncertainty-Aware Policy Optimization (GUAPO), on a real-world robot performing peg insertion. Videos are available at https://sites.google.com/view/guapo-rl


An Algorithmic Approach to Decorative Content Placement

AAAI Conferences

Given a polygon P of n vertices, the method to define a visibility polygon from a single point, q, is a well established Most digital games are goal-oriented; players are given an problem (Ghosh 2007), of time complexity Θ(n log(n)). We initial position and have to reach a certain goal position or use the well known angular plane-sweep algorithm (Asano state within a virtual level. Many generative methods to create 1985) to construct a visibility region V (q), giving us a starshaped such levels have been defined, and are able to create engaging polygonal region defined by the existing edge set, levels (Dormans and Bakkes 2011), while making filtered according to visibility from q. Figure 2 shows such a sure the game's fundamental puzzle structure in terms of region in light purple for point q.


I Can Jump! Exploring Search Algorithms for Simulating Platformer Players

AAAI Conferences

Platformer games let players solve real-time, physics-based puzzles by jumping and moving around to reach different goals. Designing levels for this context is a non-trivial task; the placement of well-timed jumps, moving platforms, in- teresting traps, etc., has a complex relationship to in-game challenge and the existence of possible solutions. In this work, we describe three different search algorithms (A⋆, MCTS and RRT) that could be used to simulate player be- haviour in the platformer domain. We evaluate and compare the three approaches applied to three non-trivial levels, show- ing a possible iterative workflow of use to designers, and re- search progress in designing search algorithms for platformer games.