Trappenberg, Thomas P.
A Novel Model for Arbitration between Planning and Habitual Control Systems
Fard, Farzaneh S., Trappenberg, Thomas P.
It is well established that humans decision making and instrumental control uses multiple systems, some which use habitual action selection and some which require deliberate planning. Deliberate planning systems use predictions of action-outcomes using an internal model of the agent's environment, while habitual action selection systems learn to automate by repeating previously rewarded actions. Habitual control is computationally efficient but may be inflexible in changing environments. Conversely, deliberate planning may be computationally expensive, but flexible in dynamic environments. This paper proposes a general architecture comprising both control paradigms by introducing an arbitrator that controls which subsystem is used at any time. This system is implemented for a target-reaching task with a simulated two-joint robotic arm that comprises a supervised internal model and deep reinforcement learning. Through permutation of target-reaching conditions, we demonstrate that the proposed is capable of rapidly learning kinematics of the system without a priori knowledge, and is robust to (A) changing environmental reward and kinematics, and (B) occluded vision. The arbitrator model is compared to exclusive deliberate planning with the internal model and exclusive habitual control instances of the model. The results show how such a model can harness the benefits of both systems, using fast decisions in reliable circumstances while optimizing performance in changing environments. In addition, the proposed model learns very fast. Finally, the system which includes internal models is able to reach the target under the visual occlusion, while the pure habitual system is unable to operate sufficiently under such conditions.
Avoiding Confusion between Predictors and Inhibitors in Value Function Approximation
Connor, Patrick C., Trappenberg, Thomas P.
In reinforcement learning, the goal is to seek rewards and avoid punishments. A simple scalar captures the value of a state or of taking an action, where expected future rewards increase and punishments decrease this quantity. Naturally an agent should learn to predict this quantity to take beneficial actions, and many value function approximators exist for this purpose. In the present work, however, we show how value function approximators can cause confusion between predictors of an outcome of one valence (e.g., a signal of reward) and the inhibitor of the opposite valence (e.g., a signal canceling expectation of punishment). We show this to be a problem for both linear and non-linear value function approximators, especially when the amount of data (or experience) is limited. We propose and evaluate a simple resolution: to instead predict reward and punishment values separately, and rectify and add them to get the value needed for decision making. We evaluate several function approximators in this slightly different value function approximation architecture and show that this approach is able to circumvent the confusion and thereby achieve lower value-prediction errors.
Effective Size of Receptive Fields of Inferior Temporal Visual Cortex Neurons in Natural Scenes
Trappenberg, Thomas P., Rolls, Edmund T., Stringer, Simon M.
Inferior temporal cortex (IT) neurons have large receptive fields when a single effective object stimulus is shown against a blank background, but have much smaller receptive fields when the object is placed in a natural scene. Thus, translation invariant object recognition is reduced in natural scenes, and this may help object selection. We describe a model which accounts for this by competition within an attractor in which the neurons are tuned to different objects in the scene, and the fovea has a higher cortical magnification factor than the peripheral visual field. Furthermore, we show that top-down object bias can increase the receptive field size, facilitating object search in complex visual scenes, and providing a model of object-based attention. The model leads to the prediction that introduction of a second object into a scene with blank background will reduce the receptive field size to values that depend on the closeness of the second object to the target stimulus. We suggest that mechanisms of this type enable the output of IT to be primarily about one object, so that the areas that receive from IT can select the object as a potential target for action.
Effective Size of Receptive Fields of Inferior Temporal Visual Cortex Neurons in Natural Scenes
Trappenberg, Thomas P., Rolls, Edmund T., Stringer, Simon M.
Inferior temporal cortex (IT) neurons have large receptive fields when a single effective object stimulus is shown against a blank background, but have much smaller receptive fields when the object is placed in a natural scene. Thus, translation invariant object recognition is reduced in natural scenes, and this may help object selection. We describe a model which accounts for this by competition within an attractor in which the neurons are tuned to different objects in the scene, and the fovea has a higher cortical magnification factor than the peripheral visual field. Furthermore, weshow that top-down object bias can increase the receptive field size, facilitating object search in complex visual scenes, and providing a model of object-based attention. The model leads to the prediction that introduction of a second object into a scene with blank background will reduce the receptive field size to values that depend on the closeness of the second object to the target stimulus. We suggest that mechanisms of this type enable the output of IT to be primarily about one object, so that the areas that receive from IT can select the object as a potential target for action.