Goto

Collaborating Authors

 Trapletti, Adrian


Stationarity and Stability of Autoregressive Neural Network Processes

Neural Information Processing Systems

AR-NNs are a natural generalization of the classic linear autoregressive AR(p) process (2) See, e.g., Brockwell & Davis (1987) for a comprehensive introduction into AR and ARMA (autoregressive moving average) models. F. Leisch, A. Trapletti and K. Hornik 268 One of the most central questions in linear time series theory is the stationarity of the model, i.e., whether the probabilistic structure of the series is constant over time or at least asymptotically constant (when not started in equilibrium). Surprisingly, this question has not gained much interest in the NN literature, especially there are-up to our knowledge-no results giving conditions for the stationarity of AR NN models. There are results on the stationarity of Hopfield nets (Wang & Sheng, 1996), but these nets cannot be used to estimate conditional expectations for time series prediction. The rest of this paper is organized as follows: In Section 2 we recall some results from time series analysis and Markov chain theory defining the relationship between a time series and its associated Markov chain. In Section 3 we use these results to establish that standard AR-NN models without shortcut connections are stationary. We also give conditions for AR-NN models with shortcut connections to be stationary. Section 4 examines the NN modeling of an important class of non-stationary to the appendix.time


Stationarity and Stability of Autoregressive Neural Network Processes

Neural Information Processing Systems

AR-NNs are a natural generalization of the classic linear autoregressive AR(p) process (2) See, e.g., Brockwell & Davis (1987) for a comprehensive introduction into AR and ARMA (autoregressive moving average) models.


Stationarity and Stability of Autoregressive Neural Network Processes

Neural Information Processing Systems

AR-NNs are a natural generalization of the classic linear autoregressive AR(p) process (2) See, e.g., Brockwell & Davis (1987) for a comprehensive introduction into AR and ARMA (autoregressive moving average) models.