Plotting

 Tran, Truyen


Sparse Mixture of Experts as Unified Competitive Learning

arXiv.org Artificial Intelligence

Sparse Mixture of Experts (SMoE) improves the efficiency of large language model training by directing input tokens to a subset of experts. Despite its success in generation tasks, its generalization ability remains an open question. In this paper, we demonstrate that current SMoEs, which fall into two categories: (1) Token Choice ;and (2) Expert Choice, struggle with tasks such as the Massive Text Embedding Benchmark (MTEB). By analyzing their mechanism through the lens of competitive learning, our study finds that the Token Choice approach may overly focus on irrelevant experts, while the Expert Choice approach risks discarding important tokens, potentially affecting performance. Motivated by this analysis, we propose Unified Competitive Learning SMoE (USMoE), a novel and efficient framework designed to improve the performance of existing SMoEs in both scenarios: with and without training. Extensive experiments across various tasks show that USMoE achieves up to a 10% improvement over traditional approaches or reduces computational inference costs by 14% while maintaining strong performance.


S2MoE: Robust Sparse Mixture of Experts via Stochastic Learning

arXiv.org Artificial Intelligence

Sparse Mixture of Experts (SMoE) enables efficient training of large language models by routing input tokens to a select number of experts. However, training SMoE remains challenging due to the issue of representation collapse. Recent studies have focused on improving the router to mitigate this problem, but existing approaches face two key limitations: (1) expert embeddings are significantly smaller than the model's dimension, contributing to representation collapse, and (2) routing each input to the Top-K experts can cause them to learn overly similar features. In this work, we propose a novel approach called Robust Sparse Mixture of Experts via Stochastic Learning (S2MoE), which is a mixture of experts designed to learn from both deterministic and non-deterministic inputs via Learning under Uncertainty. Extensive experiments across various tasks demonstrate that S2MoE achieves performance comparable to other routing methods while reducing computational inference costs by 28%.


Finding the Trigger: Causal Abductive Reasoning on Video Events

arXiv.org Artificial Intelligence

This paper introduces a new problem, Causal Abductive Reasoning on Video Events (CARVE), which involves identifying causal relationships between events in a video and generating hypotheses about causal chains that account for the occurrence of a target event. To facilitate research in this direction, we create two new benchmark datasets with both synthetic and realistic videos, accompanied by trigger-target labels generated through a novel counterfactual synthesis approach. To explore the challenge of solving CARVE, we present a Causal Event Relation Network (CERN) that examines the relationships between video events in temporal and semantic spaces to efficiently determine the root-cause trigger events. Through extensive experiments, we demonstrate the critical roles of event relational representation learning and interaction modeling in solving video causal reasoning challenges. The introduction of the CARVE task, along with the accompanying datasets and the CERN framework, will advance future research on video causal reasoning and significantly facilitate various applications, including video surveillance, root-cause analysis and movie content management.


Progressive Multi-granular Alignments for Grounded Reasoning in Large Vision-Language Models

arXiv.org Artificial Intelligence

Existing Large Vision-Language Models (LVLMs) excel at matching concepts across multi-modal inputs but struggle with compositional concepts and high-level relationships between entities. This paper introduces Progressive multi-granular Vision-Language alignments (PromViL), a novel framework to enhance LVLMs' ability in performing grounded compositional visual reasoning tasks. Our approach constructs a hierarchical structure of multi-modal alignments, ranging from simple to complex concepts. By progressively aligning textual descriptions with corresponding visual regions, our model learns to leverage contextual information from lower levels to inform higher-level reasoning. To facilitate this learning process, we introduce a data generation process that creates a novel dataset derived from Visual Genome, providing a wide range of nested compositional vision-language pairs. Experimental results demonstrate that our PromViL framework significantly outperforms baselines on various visual grounding and compositional question answering tasks. The code is available at: https://github.com/lqh52/PromViL.


Learning Structural Causal Models from Ordering: Identifiable Flow Models

arXiv.org Machine Learning

In this study, we address causal inference when only observational data and a valid causal ordering from the causal graph are available. We introduce a set of flow models that can recover component-wise, invertible transformation of exogenous variables. Our flow-based methods offer flexible model design while maintaining causal consistency regardless of the number of discretization steps. We propose design improvements that enable simultaneous learning of all causal mechanisms and reduce abduction and prediction complexity to linear O(n) relative to the number of layers, independent of the number of causal variables. Empirically, we demonstrate that our method outperforms previous state-of-the-art approaches and delivers consistent performance across a wide range of structural causal models in answering observational, interventional, and counterfactual questions. Additionally, our method achieves a significant reduction in computational time compared to existing diffusion-based techniques, making it practical for large structural causal models.


On the effectiveness of discrete representations in sparse mixture of experts

arXiv.org Artificial Intelligence

Sparse mixture of experts (SMoE) is an effective solution for scaling up model capacity without increasing the computational costs. A crucial component of SMoE is the router, responsible for directing the input to relevant experts; however, it also presents a major weakness, leading to routing inconsistencies and representation collapse issues. Instead of fixing the router like previous works, we propose an alternative that assigns experts to input via indirection, which employs the discrete representation of input that points to the expert. The discrete representations are learnt via vector quantization, resulting in a new architecture dubbed Vector-Quantized Mixture of Experts (VQMoE). We provide theoretical support and empirical evidence demonstrating the VQMoE's ability to overcome the challenges present in traditional routers. Through extensive evaluations on both large language models and vision tasks for pre-training and fine-tuning, we show that VQMoE achieves a 28% improvement in robustness compared to other SMoE routing methods, while maintaining strong performance in fine-tuning tasks.


MP-PINN: A Multi-Phase Physics-Informed Neural Network for Epidemic Forecasting

arXiv.org Artificial Intelligence

Forecasting temporal processes such as virus spreading in epidemics often requires more than just observed time-series data, especially at the beginning of a wave when data is limited. Traditional methods employ mechanistic models like the SIR family, which make strong assumptions about the underlying spreading process, often represented as a small set of compact differential equations. Data-driven methods such as deep neural networks make no such assumptions and can capture the generative process in more detail, but fail in long-term forecasting due to data limitations. We propose a new hybrid method called MP-PINN (Multi-Phase Physics-Informed Neural Network) to overcome the limitations of these two major approaches. MP-PINN instils the spreading mechanism into a neural network, enabling the mechanism to update in phases over time, reflecting the dynamics of the epidemics due to policy interventions. Experiments on COVID-19 waves demonstrate that MP-PINN achieves superior performance over pure data-driven or model-driven approaches for both short-term and long-term forecasting.


Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks

arXiv.org Artificial Intelligence

Discovering new solid-state materials requires rapidly exploring the vast space of crystal structures and locating stable regions. Generating stable materials with desired properties and compositions is extremely difficult as we search for very small isolated pockets in the exponentially many possibilities, considering elements from the periodic table and their 3D arrangements in crystal lattices. Materials discovery necessitates both optimized solution structures and diversity in the generated material structures. Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements. We propose the Symmetry-aware Hierarchical Architecture for Flow-based Traversal (SHAFT), a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties. In particular, our model decomposes the exponentially large materials space into a hierarchy of subspaces consisting of symmetric space groups, lattice parameters, and atoms. We demonstrate that SHAFT significantly outperforms state-of-the-art iterative generative methods, such as Generative Flow Networks (GFlowNets) and Crystal Diffusion Variational AutoEncoders (CDVAE), in crystal structure generation tasks, achieving higher validity, diversity, and stability of generated structures optimized for target properties and requirements.


Enhancing Length Extrapolation in Sequential Models with Pointer-Augmented Neural Memory

arXiv.org Artificial Intelligence

We propose Pointer-Augmented Neural Memory (PANM) to help neural networks understand and apply symbol processing to new, longer sequences of data. PANM integrates an external neural memory that uses novel physical addresses and pointer manipulation techniques to mimic human and computer symbol processing abilities. PANM facilitates pointer assignment, dereference, and arithmetic by explicitly using physical pointers to access memory content. Remarkably, it can learn to perform these operations through end-to-end training on sequence data, powering various sequential models. Our experiments demonstrate PANM's exceptional length extrapolating capabilities and improved performance in tasks that require symbol processing, such as algorithmic reasoning and Dyck language recognition. PANM helps Transformer achieve up to 100% generalization accuracy in compositional learning tasks and significantly better results in mathematical reasoning, question answering and machine translation tasks.


Revisiting the Dataset Bias Problem from a Statistical Perspective

arXiv.org Artificial Intelligence

In this paper, we study the "dataset bias" problem from a statistical standpoint, and identify the main cause of the problem as the strong correlation between a class attribute u and a non-class attribute b in the input x, represented by p(u|b) differing significantly from p(u). Since p(u|b) appears as part of the sampling distributions in the standard maximum log-likelihood (MLL) objective, a model trained on a biased dataset via MLL inherently incorporates such correlation into its parameters, leading to poor generalization to unbiased test data. From this observation, we propose to mitigate dataset bias via either weighting the objective of each sample n by \frac{1}{p(u_{n}|b_{n})} or sampling that sample with a weight proportional to \frac{1}{p(u_{n}|b_{n})}. While both methods are statistically equivalent, the former proves more stable and effective in practice. Additionally, we establish a connection between our debiasing approach and causal reasoning, reinforcing our method's theoretical foundation. However, when the bias label is unavailable, computing p(u|b) exactly is difficult. To overcome this challenge, we propose to approximate \frac{1}{p(u|b)} using a biased classifier trained with "bias amplification" losses. Extensive experiments on various biased datasets demonstrate the superiority of our method over existing debiasing techniques in most settings, validating our theoretical analysis.