Tran, Trang
Learn from Real: Reality Defender's Submission to ASVspoof5 Challenge
Zhu, Yi, Goel, Chirag, Koppisetti, Surya, Tran, Trang, Kumar, Ankur, Bharaj, Gaurav
Audio deepfake detection is crucial to combat the malicious use of AI-synthesized speech. Among many efforts undertaken by the community, the ASVspoof challenge has become one of the benchmarks to evaluate the generalizability and robustness of detection models. In this paper, we present Reality Defender's submission to the ASVspoof5 challenge, highlighting a novel pretraining strategy which significantly improves generalizability while maintaining low computational cost during training. Our system SLIM learns the style-linguistics dependency embeddings from various types of bonafide speech using self-supervised contrastive learning. The learned embeddings help to discriminate spoof from bonafide speech by focusing on the relationship between the style and linguistics aspects. We evaluated our system on ASVspoof5, ASV2019, and In-the-wild. Our submission achieved minDCF of 0.1499 and EER of 5.5% on ASVspoof5 Track 1, and EER of 7.4% and 10.8% on ASV2019 and In-the-wild respectively.
KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting
Stettinger, Martin, Tran, Trang, Pribik, Ingo, Leitner, Gerhard, Felfernig, Alexander, Samer, Ralph, Atas, Muesluem, Wundara, Manfred
Existing e-learning environments primarily focus on the aspect of providing intuitive learning contents and to recommend learning units in a personalized fashion. The major focus of the KnowledgeCheckR environment is to take into account forgetting processes which immediately start after a learning unit has been completed. In this context, techniques are needed that are able to predict which learning units are the most relevant ones to be repeated in future learning sessions. In this paper, we provide an overview of the recommendation approaches integrated in KnowledgeCheckR. Examples thereof are utility-based recommendation that helps to identify learning contents to be repeated in the future, collaborative filtering approaches that help to implement session-based recommendation, and content-based recommendation that supports intelligent question answering. In order to show the applicability of the presented techniques, we provide an overview of the results of empirical studies that have been conducted in real-world scenarios.