Tran, Quan Hung
Enhancing Retrieval for ESGLLM via ESG-CID -- A Disclosure Content Index Finetuning Dataset for Mapping GRI and ESRS
Ahmed, Shafiuddin Rehan, Shah, Ankit Parag, Tran, Quan Hung, Khetan, Vivek, Kang, Sukryool, Mehta, Ankit, Bao, Yujia, Wei, Wei
Climate change has intensified the need for transparency and accountability in organizational practices, making Environmental, Social, and Governance (ESG) reporting increasingly crucial. Frameworks like the Global Reporting Initiative (GRI) and the new European Sustainability Reporting Standards (ESRS) aim to standardize ESG reporting, yet generating comprehensive reports remains challenging due to the considerable length of ESG documents and variability in company reporting styles. To facilitate ESG report automation, Retrieval-Augmented Generation (RAG) systems can be employed, but their development is hindered by a lack of labeled data suitable for training retrieval models. In this paper, we leverage an underutilized source of weak supervision -- the disclosure content index found in past ESG reports -- to create a comprehensive dataset, ESG-CID, for both GRI and ESRS standards. By extracting mappings between specific disclosure requirements and corresponding report sections, and refining them using a Large Language Model as a judge, we generate a robust training and evaluation set. We benchmark popular embedding models on this dataset and show that fine-tuning BERT-based models can outperform commercial embeddings and leading public models, even under temporal data splits for cross-report style transfer from GRI to ESRS
Identifying Speakers in Dialogue Transcripts: A Text-based Approach Using Pretrained Language Models
Nguyen, Minh, Dernoncourt, Franck, Yoon, Seunghyun, Deilamsalehy, Hanieh, Tan, Hao, Rossi, Ryan, Tran, Quan Hung, Bui, Trung, Nguyen, Thien Huu
We introduce an approach to identifying speaker names in dialogue transcripts, a crucial task for enhancing content accessibility and searchability in digital media archives. Despite the advancements in speech recognition, the task of text-based speaker identification (SpeakerID) has received limited attention, lacking large-scale, diverse datasets for effective model training. Addressing these gaps, we present a novel, large-scale dataset derived from the MediaSum corpus, encompassing transcripts from a wide range of media sources. We propose novel transformer-based models tailored for SpeakerID, leveraging contextual cues within dialogues to accurately attribute speaker names. Through extensive experiments, our best model achieves a great precision of 80.3\%, setting a new benchmark for SpeakerID. The data and code are publicly available here: \url{https://github.com/adobe-research/speaker-identification}
A Class-aware Optimal Transport Approach with Higher-Order Moment Matching for Unsupervised Domain Adaptation
Nguyen, Tuan, Nguyen, Van, Le, Trung, Zhao, He, Tran, Quan Hung, Phung, Dinh
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain. In this paper, we introduce a novel approach called class-aware optimal transport (OT), which measures the OT distance between a distribution over the source class-conditional distributions and a mixture of source and target data distribution. Our class-aware OT leverages a cost function that determines the matching extent between a given data example and a source class-conditional distribution. By optimizing this cost function, we find the optimal matching between target examples and source class-conditional distributions, effectively addressing the data and label shifts that occur between the two domains. To handle the class-aware OT efficiently, we propose an amortization solution that employs deep neural networks to formulate the transportation probabilities and the cost function. Additionally, we propose minimizing class-aware Higher-order Moment Matching (HMM) to align the corresponding class regions on the source and target domains. The class-aware HMM component offers an economical computational approach for accurately evaluating the HMM distance between the two distributions. Extensive experiments on benchmark datasets demonstrate that our proposed method significantly outperforms existing state-of-the-art baselines.
FACTUAL: A Benchmark for Faithful and Consistent Textual Scene Graph Parsing
Li, Zhuang, Chai, Yuyang, Zhuo, Terry Yue, Qu, Lizhen, Haffari, Gholamreza, Li, Fei, Ji, Donghong, Tran, Quan Hung
Textual scene graph parsing has become increasingly important in various vision-language applications, including image caption evaluation and image retrieval. However, existing scene graph parsers that convert image captions into scene graphs often suffer from two types of errors. First, the generated scene graphs fail to capture the true semantics of the captions or the corresponding images, resulting in a lack of faithfulness. Second, the generated scene graphs have high inconsistency, with the same semantics represented by different annotations. To address these challenges, we propose a novel dataset, which involves re-annotating the captions in Visual Genome (VG) using a new intermediate representation called FACTUAL-MR. FACTUAL-MR can be directly converted into faithful and consistent scene graph annotations. Our experimental results clearly demonstrate that the parser trained on our dataset outperforms existing approaches in terms of faithfulness and consistency. This improvement leads to a significant performance boost in both image caption evaluation and zero-shot image retrieval tasks. Furthermore, we introduce a novel metric for measuring scene graph similarity, which, when combined with the improved scene graph parser, achieves state-of-the-art (SOTA) results on multiple benchmark datasets for the aforementioned tasks. The code and dataset are available at https://github.com/zhuang-li/FACTUAL .
Class based Influence Functions for Error Detection
Nguyen-Duc, Thang, Thanh-Tung, Hoang, Tran, Quan Hung, Huu-Tien, Dang, Nguyen, Hieu Ngoc, Dau, Anh T. V., Bui, Nghi D. Q.
Influence functions (IFs) are a powerful tool for detecting anomalous examples in large scale datasets. However, they are unstable when applied to deep networks. In this paper, we provide an explanation for the instability of IFs and develop a solution to this problem. We show that IFs are unreliable when the two data points belong to two different classes. Our solution leverages class information to improve the stability of IFs. Extensive experiments show that our modification significantly improves the performance and stability of IFs while incurring no additional computational cost.
An Additive Instance-Wise Approach to Multi-class Model Interpretation
Vo, Vy, Nguyen, Van, Le, Trung, Tran, Quan Hung, Haffari, Gholamreza, Camtepe, Seyit, Phung, Dinh
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system. A large number of interpreting methods focus on identifying explanatory input features, which generally fall into two main categories: attribution and selection. A popular attribution-based approach is to exploit local neighborhoods for learning instance-specific explainers in an additive manner. The process is thus inefficient and susceptible to poorly-conditioned samples. However, they can only interpret single-class predictions and many suffer from inconsistency across different settings, due to a strict reliance on a pre-defined number of features selected. This work exploits the strengths of both methods and proposes a framework for learning local explanations simultaneously for multiple target classes. Our model explainer significantly outperforms additive and instance-wise counterparts on faithfulness with more compact and comprehensible explanations. We also demonstrate the capacity to select stable and important features through extensive experiments on various data sets and black-box model architectures. Black-box machine learning systems enjoy a remarkable predictive performance at the cost of interpretability. This trade-off has motivated a number of interpreting approaches for explaining the behavior of these complex models. Such explanations are particularly useful for high-stakes applications such as healthcare (Caruana et al., 2015; Rich, 2016), cybersecurity (Nguyen et al., 2021) or criminal investigation (Lipton, 2018). While model interpretation can be done in various ways (Mothilal et al., 2020; Bodria et al., 2021), our discussion will focus on feature importance or saliency-based approach - that is, to assign relative importance weights to individual features w.r.t the model's prediction on an input example. Features here refer to input components interpretable to humans; for high-dimensional data such as texts or images, features can be a bag of words/phrases or a group of pixels/super-pixels (Ribeiro et al., 2016). Explanations are generally made by selecting top K features with the highest weights, signifying K most important features to a black-box's decision.
A Gated Self-attention Memory Network for Answer Selection
Lai, Tuan, Tran, Quan Hung, Bui, Trung, Kihara, Daisuke
Previous deep learning based approaches for the task mainly adopt the Compare-Aggregate architecture that performs word-level comparison followed by aggregation. In this work, we take a departure from the popular Compare-Aggregate architecture, and instead, propose a new gated self-attention memory network for the task. Combined with a simple transfer learning technique from a large-scale online corpus, our model outperforms previous methods by a large margin, achieving new state-of- the-art results on two standard answer selection datasets: TrecQA and WikiQA. 1 Introduction and Related Work Answer selection is an important task, with applications in many areas (Lai et al., 2018). Given a question and a set of candidate answers, the task is to identify the most relevant candidate. Previous work on answer selection typically relies on feature engineering, linguistic tools, or external resources (Wang et al., 2007; Wang and Manning, 2010; Heilman and Smith, 2010; Yih et al., 2013; Y ao et al., 2013).