Goto

Collaborating Authors

 Tran, Phong


VOODOO XP: Expressive One-Shot Head Reenactment for VR Telepresence

arXiv.org Artificial Intelligence

We introduce VOODOO XP: a 3D-aware one-shot head reenactment method that can generate highly expressive facial expressions from any input driver video and a single 2D portrait. Our solution is real-time, view-consistent, and can be instantly used without calibration or fine-tuning. We demonstrate our solution on a monocular video setting and an end-to-end VR telepresence system for two-way communication. Compared to 2D head reenactment methods, 3D-aware approaches aim to preserve the identity of the subject and ensure view-consistent facial geometry for novel camera poses, which makes them suitable for immersive applications. While various facial disentanglement techniques have been introduced, cutting-edge 3D-aware neural reenactment techniques still lack expressiveness and fail to reproduce complex and fine-scale facial expressions. We present a novel cross-reenactment architecture that directly transfers the driver's facial expressions to transformer blocks of the input source's 3D lifting module. We show that highly effective disentanglement is possible using an innovative multi-stage self-supervision approach, which is based on a coarse-to-fine strategy, combined with an explicit face neutralization and 3D lifted frontalization during its initial training stage. We further integrate our novel head reenactment solution into an accessible high-fidelity VR telepresence system, where any person can instantly build a personalized neural head avatar from any photo and bring it to life using the headset. We demonstrate state-of-the-art performance in terms of expressiveness and likeness preservation on a large set of diverse subjects and capture conditions.


Simple Transferability Estimation for Regression Tasks

arXiv.org Machine Learning

We consider transferability estimation, the problem of estimating how well deep learning models transfer from a source to a target task. We focus on regression tasks, which received little previous attention, and propose two simple and computationally efficient approaches that estimate transferability based on the negative regularized mean squared error of a linear regression model. We prove novel theoretical results connecting our approaches to the actual transferability of the optimal target models obtained from the transfer learning process. Despite their simplicity, our approaches significantly outperform existing state-of-the-art regression transferability estimators in both accuracy and efficiency. On two large-scale keypoint regression benchmarks, our approaches yield 12% to 36% better results on average while being at least 27% faster than previous state-of-the-art methods.


What Truly Matters in Trajectory Prediction for Autonomous Driving?

arXiv.org Artificial Intelligence

Trajectory prediction plays a vital role in the performance of autonomous driving systems, and prediction accuracy, such as average displacement error (ADE) or final displacement error (FDE), is widely used as a performance metric. However, a significant disparity exists between the accuracy of predictors on fixed datasets and driving performance when the predictors are used downstream for vehicle control, because of a dynamics gap. In the real world, the prediction algorithm influences the behavior of the ego vehicle, which, in turn, influences the behaviors of other vehicles nearby. This interaction results in predictor-specific dynamics that directly impacts prediction results. In fixed datasets, since other vehicles' responses are predetermined, this interaction effect is lost, leading to a significant dynamics gap. This paper studies the overlooked significance of this dynamics gap. We also examine several other factors contributing to the disparity between prediction performance and driving performance. The findings highlight the trade-off between the predictor's computational efficiency and prediction accuracy in determining real-world driving performance. In summary, an interactive, task-driven evaluation protocol for trajectory prediction is crucial to capture its effectiveness for autonomous driving. Source code along with experimental settings is available online.


HyperCUT: Video Sequence from a Single Blurry Image using Unsupervised Ordering

arXiv.org Artificial Intelligence

We consider the challenging task of training models for image-to-video deblurring, which aims to recover a sequence of sharp images corresponding to a given blurry image input. A critical issue disturbing the training of an image-to-video model is the ambiguity of the frame ordering since both the forward and backward sequences are plausible solutions. This paper proposes an effective self-supervised ordering scheme that allows training high-quality image-to-video deblurring models. Unlike previous methods that rely on order-invariant losses, we assign an explicit order for each video sequence, thus avoiding the order-ambiguity issue. Specifically, we map each video sequence to a vector in a latent high-dimensional space so that there exists a hyperplane such that for every video sequence, the vectors extracted from it and its reversed sequence are on different sides of the hyperplane. The side of the vectors will be used to define the order of the corresponding sequence. Last but not least, we propose a real-image dataset for the image-to-video deblurring problem that covers a variety of popular domains, including face, hand, and street. Extensive experimental results confirm the effectiveness of our method. Code and data are available at https://github.com/VinAIResearch/HyperCUT.git


Explore Image Deblurring via Blur Kernel Space

arXiv.org Artificial Intelligence

This paper introduces a method to encode the blur operators of an arbitrary dataset of sharp-blur image pairs into a blur kernel space. Assuming the encoded kernel space is close enough to in-the-wild blur operators, we propose an alternating optimization algorithm for blind image deblurring. It approximates an unseen blur operator by a kernel in the encoded space and searches for the corresponding sharp image. Unlike recent deep-learning-based methods, our system can handle unseen blur kernel, while avoiding using complicated handcrafted priors on the blur operator often found in classical methods. Due to the method's design, the encoded kernel space is fully differentiable, thus can be easily adopted in deep neural network models. Moreover, our method can be used for blur synthesis by transferring existing blur operators from a given dataset into a new domain. Finally, we provide experimental results to confirm the effectiveness of the proposed method.