Goto

Collaborating Authors

 Tran, Chi


Learning Model Agnostic Explanations via Constraint Programming

arXiv.org Artificial Intelligence

Interpretable Machine Learning faces a recurring challenge of explaining the predictions made by opaque classifiers such as ensemble models, kernel methods, or neural networks in terms that are understandable to humans. When the model is viewed as a black box, the objective is to identify a small set of features that jointly determine the black box response with minimal error. However, finding such model-agnostic explanations is computationally demanding, as the problem is intractable even for binary classifiers. In this paper, the task is framed as a Constraint Optimization Problem, where the constraint solver seeks an explanation of minimum error and bounded size for an input data instance and a set of samples generated by the black box. From a theoretical perspective, this constraint programming approach offers PAC-style guarantees for the output explanation. We evaluate the approach empirically on various datasets and show that it statistically outperforms the state-of-the-art heuristic Anchors method.


LaVy: Vietnamese Multimodal Large Language Model

arXiv.org Artificial Intelligence

Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy


PhoGPT: Generative Pre-training for Vietnamese

arXiv.org Artificial Intelligence

We open-source a state-of-the-art 4B-parameter generative model series for Vietnamese, which includes the base pre-trained monolingual model PhoGPT-4B and its chat variant, PhoGPT-4B-Chat. The base model, PhoGPT-4B, with exactly 3.7B parameters, is pre-trained from scratch on a Vietnamese corpus of 102B tokens, with an 8192 context length, employing a vocabulary of 20480 token types. The chat variant, PhoGPT-4B-Chat, is the modeling output obtained by fine-tuning PhoGPT-4B on a dataset of 70K instructional prompts and their responses, along with an additional 290K conversations. We demonstrate its strong performance compared to previous closed-source and open-source 7B-parameter models. Our PhoGPT models are available at: https://github.com/VinAIResearch/PhoGPT


MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention

arXiv.org Artificial Intelligence

The research study of detecting multiple intents and filling slots is becoming more popular because of its relevance to complicated real-world situations. Recent advanced approaches, which are joint models based on graphs, might still face two potential issues: (i) the uncertainty introduced by constructing graphs based on preliminary intents and slots, which may transfer intent-slot correlation information to incorrect label node destinations, and (ii) direct incorporation of multiple intent labels for each token w.r.t. token-level intent voting might potentially lead to incorrect slot predictions, thereby hurting the overall performance. To address these two issues, we propose a joint model named MISCA. Our MISCA introduces an intent-slot co-attention mechanism and an underlying layer of label attention mechanism. These mechanisms enable MISCA to effectively capture correlations between intents and slot labels, eliminating the need for graph construction. They also facilitate the transfer of correlation information in both directions: from intents to slots and from slots to intents, through multiple levels of label-specific representations, without relying on token-level intent information. Experimental results show that MISCA outperforms previous models, achieving new state-of-the-art overall accuracy performances on two benchmark datasets MixATIS and MixSNIPS. This highlights the effectiveness of our attention mechanisms.