Goto

Collaborating Authors

 Trabelsi, Yohai


Value-based Resource Matching with Fairness Criteria: Application to Agricultural Water Trading

arXiv.org Artificial Intelligence

Optimal allocation of agricultural water in the event of droughts is an important global problem. In addressing this problem, many aspects, including the welfare of farmers, the economy, and the environment, must be considered. Under this backdrop, our work focuses on several resource-matching problems accounting for agents with multi-crop portfolios, geographic constraints, and fairness. First, we address a matching problem where the goal is to maximize a welfare function in two-sided markets where buyers' requirements and sellers' supplies are represented by value functions that assign prices (or costs) to specified volumes of water. For the setting where the value functions satisfy certain monotonicity properties, we present an efficient algorithm that maximizes a social welfare function. When there are minimum water requirement constraints, we present a randomized algorithm which ensures that the constraints are satisfied in expectation. For a single seller--multiple buyers setting with fairness constraints, we design an efficient algorithm that maximizes the minimum level of satisfaction of any buyer. We also present computational complexity results that highlight the limits on the generalizability of our results. We evaluate the algorithms developed in our work with experiments on both real-world and synthetic data sets with respect to drought severity, value functions, and seniority of agents.


Resource Sharing Through Multi-Round Matchings

arXiv.org Artificial Intelligence

Applications such as employees sharing office spaces over a workweek can be modeled as problems where agents are matched to resources over multiple rounds. Agents' requirements limit the set of compatible resources and the rounds in which they want to be matched. Viewing such an application as a multi-round matching problem on a bipartite compatibility graph between agents and resources, we show that a solution (i.e., a set of matchings, with one matching per round) can be found efficiently if one exists. To cope with situations where a solution does not exist, we consider two extensions. In the first extension, a benefit function is defined for each agent and the objective is to find a multi-round matching to maximize the total benefit. For a general class of benefit functions satisfying certain properties (including diminishing returns), we show that this multi-round matching problem is efficiently solvable. This class includes utilitarian and Rawlsian welfare functions. For another benefit function, we show that the maximization problem is NP-hard. In the second extension, the objective is to generate advice to each agent (i.e., a subset of requirements to be relaxed) subject to a budget constraint so that the agent can be matched. We show that this budget-constrained advice generation problem is NP-hard. For this problem, we develop an integer linear programming formulation as well as a heuristic based on local search. We experimentally evaluate our algorithms on synthetic networks and apply them to two real-world situations: shared office spaces and matching courses to classrooms.