Goto

Collaborating Authors

 Touretzky, David


Graphical Display of Search Trees for Transparent Robot Programming

AAAI Conferences

Search algorithms such as Rapidly-exploring Random Trees (RRTs) are common in robot programming. Including graphical representations of the output of these algorithms in a robotics framework can make the algorithms more accessible to students, and can also help programmers analyze and account for unexpected results. For this project, we used the Tekkotsu open source robot programming framework, available at Tekkotsu.org. We extended Tekkotsu’s graphical user interface for displaying vision data and maps to also display the output of an RRT search. We created several demos using two types of searches: one from a navigation path planner, and one from an arm path planner. In some cases the search had no solution, and the graphical output helped to illustrate why. This confirms the utility of the RRT visualization for explaining unexpected search results. We expect that this tool will also contribute to improved student understanding of the search algorithm.


Small Scale Manipulation with the Calliope Robot

AAAI Conferences

Calliope is an open source mobile robot designed in the Tekkotsu Lab at Carnegie Mellon University in collaboration with RoPro Design, Inc. The Calliope5SP model features an iRobot Create base, an ASUS netbook, a 5-degree of freedom arm with a gripper with two independently controllable fingers, and a Sony PlayStation Eye camera and Robotis AX-S1 IR rangefinder on a pan/tilt mount. We use chess as a test of Calliope’s abilities. Since Calliope is a mobile platform we consider how problems in vision and localization directly impact the performance of manipulation. Calliope’s arm is too short to reach across the entire chessboard. The robot must therefore navigate to a location that provides the best position to access the pieces it wants to move. The robot proved capable of performing small-scale manipulation tasks that require careful positioning.