Tosatto, Samuele
Investigating the Benefits of Nonlinear Action Maps in Data-Driven Teleoperation
Przystupa, Michael, Gidel, Gauthier, Taylor, Matthew E., Jagersand, Martin, Piater, Justus, Tosatto, Samuele
As robots become more common for both able-bodied individuals and those living with a disability, it is increasingly important that lay people be able to drive multi-degree-of-freedom platforms with low-dimensional controllers. One approach is to use state-conditioned action mapping methods to learn mappings between low-dimensional controllers and high DOF manipulators -- prior research suggests these mappings can simplify the teleoperation experience for users. Recent works suggest that neural networks predicting a local linear function are superior to the typical end-to-end multi-layer perceptrons because they allow users to more easily undo actions, providing more control over the system. However, local linear models assume actions exist on a linear subspace and may not capture nuanced actions in training data. We observe that the benefit of these mappings is being an odd function concerning user actions, and propose end-to-end nonlinear action maps which achieve this property. Unfortunately, our experiments show that such modifications offer minimal advantages over previous solutions. We find that nonlinear odd functions behave linearly for most of the control space, suggesting architecture structure improvements are not the primary factor in data-driven teleoperation. Our results suggest other avenues, such as data augmentation techniques and analysis of human behavior, are necessary for action maps to become practical in real-world applications, such as in assistive robotics to improve the quality of life of people living with w disability.
Dynamic Decision Frequency with Continuous Options
Karimi, Amirmohammad, Jin, Jun, Luo, Jun, Mahmood, A. Rupam, Jagersand, Martin, Tosatto, Samuele
In classic reinforcement learning algorithms, agents make decisions at discrete and fixed time intervals. The duration between decisions becomes a crucial hyperparameter, as setting it too short may increase the problem's difficulty by requiring the agent to make numerous decisions to achieve its goal while setting it too long can result in the agent losing control over the system. However, physical systems do not necessarily require a constant control frequency, and for learning agents, it is often preferable to operate with a low frequency when possible and a high frequency when necessary. We propose a framework called Continuous-Time Continuous-Options (CTCO), where the agent chooses options as sub-policies of variable durations. These options are time-continuous and can interact with the system at any desired frequency providing a smooth change of actions. We demonstrate the effectiveness of CTCO by comparing its performance to classical RL and temporal-abstraction RL methods on simulated continuous control tasks with various action-cycle times. We show that our algorithm's performance is not affected by the choice of environment interaction frequency. Furthermore, we demonstrate the efficacy of CTCO in facilitating exploration in a real-world visual reaching task for a 7 DOF robotic arm with sparse rewards.
Deep Probabilistic Movement Primitives with a Bayesian Aggregator
Przystupa, Michael, Haghverd, Faezeh, Jagersand, Martin, Tosatto, Samuele
Movement primitives are trainable parametric models that reproduce robotic movements starting from a limited set of demonstrations. Previous works proposed simple linear models that exhibited high sample efficiency and generalization power by allowing temporal modulation of movements (reproducing movements faster or slower), blending (merging two movements into one), via-point conditioning (constraining a movement to meet some particular via-points) and context conditioning (generation of movements based on an observed variable, e.g., position of an object). Previous works have proposed neural network-based motor primitive models, having demonstrated their capacity to perform tasks with some forms of input conditioning or time-modulation representations. However, there has not been a single unified deep motor primitive's model proposed that is capable of all previous operations, limiting neural motor primitive's potential applications. This paper proposes a deep movement primitive architecture that encodes all the operations above and uses a Bayesian context aggregator that allows a more sound context conditioning and blending. Our results demonstrate our approach can scale to reproduce complex motions on a larger variety of input choices compared to baselines while maintaining operations of linear movement primitives provide.
A Temporal-Difference Approach to Policy Gradient Estimation
Tosatto, Samuele, Patterson, Andrew, White, Martha, Mahmood, A. Rupam
The policy gradient theorem (Sutton et al., 2000) prescribes the usage of a cumulative discounted state distribution under the target policy to approximate the gradient. Most algorithms based on this theorem, in practice, break this assumption, introducing a distribution shift that can cause the convergence to poor solutions. In this paper, we propose a new approach of reconstructing the policy gradient from the start state without requiring a particular sampling strategy. The policy gradient calculation in this form can be simplified in terms of a gradient critic, which can be recursively estimated due to a new Bellman equation of gradients. By using temporal-difference updates of the gradient critic from an off-policy data stream, we develop the first estimator that sidesteps the distribution shift issue in a model-free way. We prove that, under certain realizability conditions, our estimator is unbiased regardless of the sampling strategy. We empirically show that our technique achieves a superior bias-variance trade-off and performance in presence of off-policy samples.
Batch Reinforcement Learning with a Nonparametric Off-Policy Policy Gradient
Tosatto, Samuele, Carvalho, João, Peters, Jan
Off-policy Reinforcement Learning (RL) holds the promise of better data efficiency as it allows sample reuse and potentially enables safe interaction with the environment. Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates. The price of inefficiency becomes evident in real-world scenarios such as interaction-driven robot learning, where the success of RL has been rather limited, and a very high sample cost hinders straightforward application. In this paper, we propose a nonparametric Bellman equation, which can be solved in closed form. The solution is differentiable w.r.t the policy parameters and gives access to an estimation of the policy gradient. In this way, we avoid the high variance of importance sampling approaches, and the high bias of semi-gradient methods. We empirically analyze the quality of our gradient estimate against state-of-the-art methods, and show that it outperforms the baselines in terms of sample efficiency on classical control tasks.