Goto

Collaborating Authors

 Torabi, Yasaman


Manikin-Recorded Cardiopulmonary Sounds Dataset Using Digital Stethoscope

arXiv.org Artificial Intelligence

Heart and lung sounds are crucial for healthcare monitoring. Recent improvements in stethoscope technology have made it possible to capture patient sounds with enhanced precision. In this dataset, we used a digital stethoscope to capture both heart and lung sounds, including individual and mixed recordings. To our knowledge, this is the first dataset to offer both separate and mixed cardiorespiratory sounds. The recordings were collected from a clinical manikin, a patient simulator designed to replicate human physiological conditions, generating clean heart and lung sounds at different body locations. This dataset includes both normal sounds and various abnormalities (i.e., murmur, atrial fibrillation, tachycardia, atrioventricular block, third and fourth heart sound, wheezing, crackles, rhonchi, pleural rub, and gurgling sounds). The dataset includes audio recordings of chest examinations performed at different anatomical locations, as determined by specialist nurses. Each recording has been enhanced using frequency filters to highlight specific sound types. This dataset is useful for applications in artificial intelligence, such as automated cardiopulmonary disease detection, sound classification, unsupervised separation techniques, and deep learning algorithms related to audio signal processing.


Exploring Sensing Devices for Heart and Lung Sound Monitoring

arXiv.org Artificial Intelligence

This paper presents a comprehensive review of cardiorespiratory auscultation sensing devices which is useful for understanding the theoretical aspects of sensing devices, as well as practical notes to design novel sensing devices. One of the methods to design a stethoscope is using electret condenser microphones (ECM). In this paper, we first introduce the acoustic properties of the heart and lungs, as well as a brief history of stethoscope evolution. Then, we discuss the basic concept of ECM sensors and a recent stethoscope based on this technology. In response to the limitations of ECM-based systems, we explore the potential of microelectromechanical systems (MEMS), particularly focusing on piezoelectric transducer (PZT) sensors. This paper comprehensively reviews sensing technologies, emphasizing innovative MEMS-based designs for wearable cardiopulmonary auscultation in the past decade. To our knowledge, this is the first paper to summarize ECM and MEMS applications for heart and lung sound analysis. Keywords: Micro-electro-mechanical Systems (MEMS); Electret Condenser Microphone (ECM); Wearable Sensing Devices; Cardiorespiratory Auscultation; Phonocardiography (PCG); Heart Sound; Lung Sound