Tonge, Ashwini
Uncovering Scene Context for Predicting Privacy of Online Shared Images
Tonge, Ashwini (Kansas State University ) | Caragea, Cornelia (Kansas State Univeristy) | Squicciarini, Anna (Pennsylvania State University)
With the exponential increase in the number of images that are shared online every day, the development of effective and efficient learning methods for image privacy prediction has become crucial. Prior works have used as features automatically derived object tags from images' content and manually annotated user tags. However, we believe that in addition to objects, the scene context obtained from images’ content can improve the performance of privacy prediction. Hence, we propose to uncover scene-based tags from images' content using convolutional neural networks. Experimental results on a Flickr dataset show that the scene tags and object tags complement each other and yield the best performance when used in combination with user tags.
Identifying Private Content for Online Image Sharing
Tonge, Ashwini (Kansas State University )
I present the outline of my dissertation work, Identifying Private Content for Online Image Sharing. Particularly, in my dissertation, I explore learning models to predict appropriate binary privacy settings (i.e., private, public) for images, before they are shared online. Specifically, I investigate textual features (user-annotated tags and automatically derived tags), and visual semantic features that are transferred from various layers of deep Convolutional Neural Network (CNN). Experimental results show that the learning models based on the proposed features outperform strong baseline models for this task on the Flickr dataset of thousands of images.