Goto

Collaborating Authors

 Tong, Guangmo


Advances in Set Function Learning: A Survey of Techniques and Applications

arXiv.org Artificial Intelligence

Set function learning has emerged as a crucial area in machine learning, addressing the challenge of modeling functions that take sets as inputs. Unlike traditional machine learning that involves fixed-size input vectors where the order of features matters, set function learning demands methods that are invariant to permutations of the input set, presenting a unique and complex problem. This survey provides a comprehensive overview of the current development in set function learning, covering foundational theories, key methodologies, and diverse applications. We categorize and discuss existing approaches, focusing on deep learning approaches, such as DeepSets and Set Transformer based methods, as well as other notable alternative methods beyond deep learning, offering a complete view of current models. We also introduce various applications and relevant datasets, such as point cloud processing and multi-label classification, highlighting the significant progress achieved by set function learning methods in these domains. Finally, we conclude by summarizing the current state of set function learning approaches and identifying promising future research directions, aiming to guide and inspire further advancements in this promising field.


Generalization Performance of Hypergraph Neural Networks

arXiv.org Artificial Intelligence

Hypergraph neural networks have been promising tools for handling learning tasks involving higher-order data, with notable applications in web graphs, such as modeling multi-way hyperlink structures and complex user interactions. Yet, their generalization abilities in theory are less clear to us. In this paper, we seek to develop margin-based generalization bounds for four representative classes of hypergraph neural networks, including convolutional-based methods (UniGCN), set-based aggregation (AllDeepSets), invariant and equivariant transformations (M-IGN), and tensor-based approaches (T-MPHN). Through the PAC-Bayes framework, our results reveal the manner in which hypergraph structure and spectral norms of the learned weights can affect the generalization bounds, where the key technical challenge lies in developing new perturbation analysis for hypergraph neural networks, which offers a rigorous understanding of how variations in the model's weights and hypergraph structure impact its generalization behavior. Our empirical study examines the relationship between the practical performance and theoretical bounds of the models over synthetic and real-world datasets. One of our primary observations is the strong correlation between the theoretical bounds and empirical loss, with statistically significant consistency in most cases.


Query-decision Regression between Shortest Path and Minimum Steiner Tree

arXiv.org Artificial Intelligence

Considering a graph with unknown weights, can we find the shortest path for a pair of nodes if we know the minimal Steiner trees associated with some subset of nodes? That is, with respect to a fixed latent decision-making system (e.g., a weighted graph), we seek to solve one optimization problem (e.g., the shortest path problem) by leveraging information associated with another optimization problem (e.g., the minimal Steiner tree problem). In this paper, we study such a prototype problem called \textit{query-decision regression with task shifts}, focusing on the shortest path problem and the minimum Steiner tree problem. We provide theoretical insights regarding the design of realizable hypothesis spaces for building scoring models, and present two principled learning frameworks. Our experimental studies show that such problems can be solved to a decent extent with statistical significance.


VN-Solver: Vision-based Neural Solver for Combinatorial Optimization over Graphs

arXiv.org Artificial Intelligence

Data-driven approaches have been proven effective in solving combinatorial optimization problems over graphs such as the traveling salesman problems and the vehicle routing problem. The rationale behind such methods is that the input instances may follow distributions with salient patterns that can be leveraged to overcome the worst-case computational hardness. For optimization problems over graphs, the common practice of neural combinatorial solvers consumes the inputs in the form of adjacency matrices. In this paper, we explore a vision-based method that is conceptually novel: can neural models solve graph optimization problems by \textit{taking a look at the graph pattern}? Our results suggest that the performance of such vision-based methods is not only non-trivial but also comparable to the state-of-the-art matrix-based methods, which opens a new avenue for developing data-driven optimization solvers.


Social-Inverse: Inverse Decision-making of Social Contagion Management with Task Migrations

arXiv.org Artificial Intelligence

Considering two decision-making tasks $A$ and $B$, each of which wishes to compute an effective \textit{decision} $Y$ for a given \textit{query} $X$, {can we solve task $B$ by using query-decision pairs $(X, Y)$ of $A$ without knowing the latent decision-making model?} Such problems, called \textit{inverse decision-making with task migrations}, are of interest in that the complex and stochastic nature of real-world applications often prevents the agent from completely knowing the underlying system. In this paper, we introduce such a new problem with formal formulations and present a generic framework for addressing decision-making tasks in social contagion management. On the theory side, we present a generalization analysis for justifying the learning performance of our framework. In empirical studies, we perform a sanity check and compare the presented method with other possible learning-based and graph-based methods. We have acquired promising experimental results, confirming for the first time that it is possible to solve one decision-making task by using the solutions associated with another one.


StratLearner: Learning a Strategy for Misinformation Prevention in Social Networks

arXiv.org Machine Learning

Given a combinatorial optimization problem taking an input, can we learn a strategy to solve it from the examples of input-solution pairs without knowing its objective function? In this paper, we consider such a setting and study the misinformation prevention problem. Given the examples of attacker-protector pairs, our goal is to learn a strategy to compute protectors against future attackers, without the need of knowing the underlying diffusion model. To this end, we design a structured prediction framework, where the main idea is to parameterize the scoring function using random features constructed through distance functions on randomly sampled subgraphs, which leads to a kernelized scoring function with weights learnable via the large margin method. Evidenced by experiments, our method can produce near-optimal protectors without using any information of the diffusion model, and it outperforms other possible graph-based and learning-based methods by an evident margin.