Goto

Collaborating Authors

 Tomoyuki Obuchi



Objective and efficient inference for couplings in neuronal networks

Neural Information Processing Systems

Inferring directional couplings from the spike data of networks is desired in various scientific fields such as neuroscience. Here, we apply a recently proposed objective procedure to the spike data obtained from the Hodgkin-Huxley type models and in vitro neuronal networks cultured in a circular structure. As a result, we succeed in reconstructing synaptic connections accurately from the evoked activity as well as the spontaneous one. To obtain the results, we invent an analytic formula approximately implementing a method of screening relevant couplings. This significantly reduces the computational cost of the screening method employed in the proposed objective procedure, making it possible to treat large-size systems as in this study.


Mean-field theory of graph neural networks in graph partitioning

Neural Information Processing Systems

A theoretical performance analysis of the graph neural network (GNN) is presented. For classification tasks, the neural network approach has the advantage in terms of flexibility that it can be employed in a data-driven manner, whereas Bayesian inference requires the assumption of a specific model. A fundamental question is then whether GNN has a high accuracy in addition to this flexibility. Moreover, whether the achieved performance is predominately a result of the backpropagation or the architecture itself is a matter of considerable interest. To gain a better insight into these questions, a mean-field theory of a minimal GNN architecture is developed for the graph partitioning problem. This demonstrates a good agreement with numerical experiments.


Objective and efficient inference for couplings in neuronal networks

Neural Information Processing Systems

Inferring directional couplings from the spike data of networks is desired in various scientific fields such as neuroscience. Here, we apply a recently proposed objective procedure to the spike data obtained from the Hodgkin-Huxley type models and in vitro neuronal networks cultured in a circular structure. As a result, we succeed in reconstructing synaptic connections accurately from the evoked activity as well as the spontaneous one. To obtain the results, we invent an analytic formula approximately implementing a method of screening relevant couplings. This significantly reduces the computational cost of the screening method employed in the proposed objective procedure, making it possible to treat large-size systems as in this study.