Goto

Collaborating Authors

 Tomlinson, Hamish


OPFData: Large-scale datasets for AC optimal power flow with topological perturbations

arXiv.org Artificial Intelligence

Solving the AC optimal power flow problem (AC-OPF) is critical to the efficient and safe planning and operation of power grids. Small efficiency improvements in this domain have the potential to lead to billions of dollars of cost savings, and significant reductions in emissions from fossil fuel generators. Recent work on data-driven solution methods for AC-OPF shows the potential for large speed improvements compared to traditional solvers; however, no large-scale open datasets for this problem exist. We present the largest readily-available collection of solved AC-OPF problems to date. This collection is orders of magnitude larger than existing readily-available datasets, allowing training of high-capacity data-driven models. Uniquely, it includes topological perturbations - a critical requirement for usage in realistic power grid operations. We hope this resource will spur the community to scale research to larger grid sizes with variable topology.


CANOS: A Fast and Scalable Neural AC-OPF Solver Robust To N-1 Perturbations

arXiv.org Artificial Intelligence

Optimal Power Flow (OPF) refers to a wide range of related optimization problems with the goal of operating power systems efficiently and securely. In the simplest setting, OPF determines how much power to generate in order to minimize costs while meeting demand for power and satisfying physical and operational constraints. In even the simplest case, power grid operators use approximations of the AC-OPF problem because solving the exact problem is prohibitively slow with state-of-the-art solvers. These approximations sacrifice accuracy and operational feasibility in favor of speed. This trade-off leads to costly "uplift payments" and increased carbon emissions, especially for large power grids. In the present work, we train a deep learning system (CANOS) to predict near-optimal solutions (within 1% of the true AC-OPF cost) without compromising speed (running in as little as 33--65 ms). Importantly, CANOS scales to realistic grid sizes with promising empirical results on grids containing as many as 10,000 buses. Finally, because CANOS is a Graph Neural Network, it is robust to changes in topology. We show that CANOS is accurate across N-1 topological perturbations of a base grid typically used in security-constrained analysis. This paves the way for more efficient optimization of more complex OPF problems which alter grid connectivity such as unit commitment, topology optimization and security-constrained OPF.


Phenotyping with Positive Unlabelled Learning for Genome-Wide Association Studies

arXiv.org Artificial Intelligence

Identifying phenotypes plays an important role in furthering our understanding of disease biology through practical applications within healthcare and the life sciences. The challenge of dealing with the complexities and noise within electronic health records (EHRs) has motivated applications of machine learning in phenotypic discovery. While recent research has focused on finding predictive subtypes for clinical decision support, here we instead focus on the noise that results in phenotypic misclassification, which can reduce a phenotypes ability to detect associations in genome-wide association studies (GWAS). We show that by combining anchor learning and transformer architectures into our proposed model, AnchorBERT, we are able to detect genomic associations only previously found in large consortium studies with 5$\times$ more cases. When reducing the number of controls available by 50\%, we find our model is able to maintain 40\% more significant genomic associations from the GWAS catalog compared to standard phenotype definitions. \keywords{Phenotyping \and Machine Learning \and Semi-Supervised \and Genetic Association Studies \and Biological Discovery}