Goto

Collaborating Authors

 Tomashenko, Natalia


Analysis of Speech Temporal Dynamics in the Context of Speaker Verification and Voice Anonymization

arXiv.org Artificial Intelligence

Abstract--In this paper, we investigate the impact of speech methods use large-scale pre-trained models for extracting specific temporal dynamics in application to automatic speaker verification attributes and provide better content and privacy preservation than and speaker voice anonymization tasks. We propose several signal processing based methods. The diversity of approaches is metrics to perform automatic speaker verification based only illustrated by the VoicePrivacy 2024 Challenge [10], which provided on phoneme durations. Experimental results demonstrate that six baseline anonymization systems, namely anonymization using x-phoneme durations leak some speaker information and can reveal vectors and a neural source-filter model [6], [11], signal processing speaker identity from both original and anonymized speech. While specific studies have been dedicated to speaker information carried by pitch [5], [6], [8], the impact of speech temporal dynamics on speaker verification and re-identification has been overlooked.


The First VoicePrivacy Attacker Challenge Evaluation Plan

arXiv.org Artificial Intelligence

The First VoicePrivacy Attacker Challenge is a new kind of challenge organized as part of the VoicePrivacy initiative and supported by ICASSP 2025 as the SP Grand Challenge It focuses on developing attacker systems against voice anonymization, which will be evaluated against a set of anonymization systems submitted to the VoicePrivacy 2024 Challenge. Training, development, and evaluation datasets are provided along with a baseline attacker system. Participants shall develop their attacker systems in the form of automatic speaker verification systems and submit their scores on the development and evaluation data to the organizers. To do so, they can use any additional training data and models, provided that they are openly available and declared before the specified deadline. The metric for evaluation is equal error rate (EER). Results will be presented at the ICASSP 2025 special session to which 5 selected top-ranked participants will be invited to submit and present their challenge systems.


The VoicePrivacy 2024 Challenge Evaluation Plan

arXiv.org Artificial Intelligence

The task of the challenge is to develop a voice anonymization system for speech data which conceals the speaker's voice identity while protecting linguistic content and emotional states. The organizers provide development and evaluation datasets and evaluation scripts, as well as baseline anonymization systems and a list of training resources formed on the basis of the participants' requests. Participants apply their developed anonymization systems, run evaluation scripts and submit evaluation results and anonymized speech data to the organizers. Results will be presented at a workshop held in conjunction with Interspeech 2024 to which all participants are invited to present their challenge systems and to submit additional workshop papers.


LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) is at the origin of unprecedented improvements in many different domains including computer vision and natural language processing. Speech processing drastically benefitted from SSL as most of the current domain-related tasks are now being approached with pre-trained models. This work introduces LeBenchmark 2.0 an open-source framework for assessing and building SSL-equipped French speech technologies. It includes documented, large-scale and heterogeneous corpora with up to 14,000 hours of heterogeneous speech, ten pre-trained SSL wav2vec 2.0 models containing from 26 million to one billion learnable parameters shared with the community, and an evaluation protocol made of six downstream tasks to complement existing benchmarks. LeBenchmark 2.0 also presents unique perspectives on pre-trained SSL models for speech with the investigation of frozen versus fine-tuned downstream models, task-agnostic versus task-specific pre-trained models as well as a discussion on the carbon footprint of large-scale model training.


Federated Learning for ASR based on Wav2vec 2.0

arXiv.org Artificial Intelligence

This paper presents a study on the use of federated learning to train an ASR model based on a wav2vec 2.0 model pre-trained by self supervision. Carried out on the well-known TED-LIUM 3 dataset, our experiments show that such a model can obtain, with no use of a language model, a word error rate of 10.92% on the official TED-LIUM 3 test set, without sharing any data from the different users. We also analyse the ASR performance for speakers depending to their participation to the federated learning. Since federated learning was first introduced for privacy purposes, we also measure its ability to protect speaker identity. To do that, we exploit an approach to analyze information contained in exchanged models based on a neural network footprint on an indicator dataset. This analysis is made layer-wise and shows which layers in an exchanged wav2vec 2.0 based model bring the speaker identity information.


The VoicePrivacy 2020 Challenge: Results and findings

arXiv.org Artificial Intelligence

This paper presents the results and analyses stemming from the first VoicePrivacy 2020 Challenge which focuses on developing anonymization solutions for speech technology. We provide a systematic overview of the challenge design with an analysis of submitted systems and evaluation results. In particular, we describe the voice anonymization task and datasets used for system development and evaluation. Also, we present different attack models and the associated objective and subjective evaluation metrics. We introduce two anonymization baselines and provide a summary description of the anonymization systems developed by the challenge participants. We report objective and subjective evaluation results for baseline and submitted systems. In addition, we present experimental results for alternative privacy metrics and attack models developed as a part of the post-evaluation analysis. Finally, we summarize our insights and observations that will influence the design of the next VoicePrivacy challenge edition and some directions for future voice anonymization research.


LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech

arXiv.org Artificial Intelligence

Self-Supervised Learning (SSL) using huge unlabeled data has been successfully explored for image and natural language processing. Recent works also investigated SSL from speech. They were notably successful to improve performance on downstream tasks such as automatic speech recognition (ASR). While these works suggest it is possible to reduce dependence on labeled data for building efficient speech systems, their evaluation was mostly made on ASR and using multiple and heterogeneous experimental settings (most of them for English). This questions the objective comparison of SSL approaches and the evaluation of their impact on building speech systems. In this paper, we propose LeBenchmark: a reproducible framework for assessing SSL from speech. It not only includes ASR (high and low resource) tasks but also spoken language understanding, speech translation and emotion recognition. We also focus on speech technologies in a language different than English: French. SSL models of different sizes are trained from carefully sourced and documented datasets. Experiments show that SSL is beneficial for most but not all tasks which confirms the need for exhaustive and reliable benchmarks to evaluate its real impact. LeBenchmark is shared with the scientific community for reproducible research in SSL from speech.