Goto

Collaborating Authors

 Tom M. Mitchell




Game Design for Eliciting Distinguishable Behavior

Neural Information Processing Systems

The ability to inferring latent psychological traits from human behavior is key to developing personalized human-interacting machine learning systems. Approaches to infer such traits range from surveys to manually-constructed experiments and games. However, these traditional games are limited because they are typically designed based on heuristics. In this paper, we formulate the task of designing behavior diagnostic games that elicit distinguishable behavior as a mutual information maximization problem, which can be solved by optimizing a variational lower bound. Our framework is instantiated by using prospect theory to model varying player traits, and Markov Decision Processes to parameterize the games. We validate our approach empirically, showing that our designed games can successfully distinguish among players with different traits, outperforming manually-designed ones by a large margin.



Game Design for Eliciting Distinguishable Behavior

Neural Information Processing Systems

The ability to inferring latent psychological traits from human behavior is key to developing personalized human-interacting machine learning systems. Approaches to infer such traits range from surveys to manually-constructed experiments and games. However, these traditional games are limited because they are typically designed based on heuristics. In this paper, we formulate the task of designing behavior diagnostic games that elicit distinguishable behavior as a mutual information maximization problem, which can be solved by optimizing a variational lower bound. Our framework is instantiated by using prospect theory to model varying player traits, and Markov Decision Processes to parameterize the games. We validate our approach empirically, showing that our designed games can successfully distinguish among players with different traits, outperforming manually-designed ones by a large margin.


Learning Data Manipulation for Augmentation and Weighting

Neural Information Processing Systems

Manipulating data, such as weighting data examples or augmenting with new instances, has been increasingly used to improve model training. Previous work has studied various rule-or learning-based approaches designed for specific types of data manipulation. In this work, we propose a new method that supports learning different manipulation schemes with the same gradient-based algorithm. Our approach builds upon a recent connection of supervised learning and reinforcement learning (RL), and adapts an off-the-shelf reward learning algorithm from RL for joint data manipulation learning and model training.


Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach

Neural Information Processing Systems

We propose an efficient method to estimate the accuracy of classifiers using only unlabeled data. We consider a setting with multiple classification problems where the target classes may be tied together through logical constraints. For example, a set of classes may be mutually exclusive, meaning that a data instance can belong to at most one of them. The proposed method is based on the intuition that: (i) when classifiers agree, they are more likely to be correct, and (ii) when the classifiers make a prediction that violates the constraints, at least one classifier must be making an error. Experiments on four real-world data sets produce accuracy estimates within a few percent of the true accuracy, using solely unlabeled data. Our models also outperform existing state-of-the-art solutions in both estimating accuracies, and combining multiple classifier outputs. The results emphasize the utility of logical constraints in estimating accuracy, thus validating our intuition.