Goto

Collaborating Authors

 Tolias, Andreas


NeuroAI for AI Safety

arXiv.org Artificial Intelligence

As AI systems become increasingly powerful, the need for safe AI has become more pressing. Humans are an attractive model for AI safety: as the only known agents capable of general intelligence, they perform robustly even under conditions that deviate significantly from prior experiences, explore the world safely, understand pragmatics, and can cooperate to meet their intrinsic goals. Intelligence, when coupled with cooperation and safety mechanisms, can drive sustained progress and well-being. These properties are a function of the architecture of the brain and the learning algorithms it implements. Neuroscience may thus hold important keys to technical AI safety that are currently underexplored and underutilized. In this roadmap, we highlight and critically evaluate several paths toward AI safety inspired by neuroscience: emulating the brain's representations, information processing, and architecture; building robust sensory and motor systems from imitating brain data and bodies; fine-tuning AI systems on brain data; advancing interpretability using neuroscience methods; and scaling up cognitively-inspired architectures. We make several concrete recommendations for how neuroscience can positively impact AI safety.


Avalanche: an End-to-End Library for Continual Learning

arXiv.org Artificial Intelligence

Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation Figure 1: Operational representation of Avalanche with its of continual learning algorithms.


Stimulus domain transfer in recurrent models for large scale cortical population prediction on video

Neural Information Processing Systems

To better understand the representations in visual cortex, we need to generate better predictions of neural activity in awake animals presented with their ecological input: natural video. Despite recent advances in models for static images, models for predicting responses to natural video are scarce and standard linear-nonlinear models perform poorly. We developed a new deep recurrent network architecture that predicts inferred spiking activity of thousands of mouse V1 neurons simultaneously recorded with two-photon microscopy, while accounting for confounding factors such as the animal's gaze position and brain state changes related to running state and pupil dilation. Powerful system identification models provide an opportunity to gain insight into cortical functions through in silico experiments that can subsequently be tested in the brain. However, in many cases this approach requires that the model is able to generalize to stimulus statistics that it was not trained on, such as band-limited noise and other parameterized stimuli. We investigated these domain transfer properties in our model and find that our model trained on natural images is able to correctly predict the orientation tuning of neurons in responses to artificial noise stimuli. Finally, we show that we can fully generalize from movies to noise and maintain high predictive performance on both stimulus domains by fine-tuning only the final layer's weights on a network otherwise trained on natural movies. The converse, however, is not true.


Stimulus domain transfer in recurrent models for large scale cortical population prediction on video

Neural Information Processing Systems

To better understand the representations in visual cortex, we need to generate better predictions of neural activity in awake animals presented with their ecological input: natural video. Despite recent advances in models for static images, models for predicting responses to natural video are scarce and standard linear-nonlinear models perform poorly. We developed a new deep recurrent network architecture that predicts inferred spiking activity of thousands of mouse V1 neurons simultaneously recorded with two-photon microscopy, while accounting for confounding factors such as the animal's gaze position and brain state changes related to running state and pupil dilation. Powerful system identification models provide an opportunity to gain insight into cortical functions through in silico experiments that can subsequently be tested in the brain. However, in many cases this approach requires that the model is able to generalize to stimulus statistics that it was not trained on, such as band-limited noise and other parameterized stimuli. We investigated these domain transfer properties in our model and find that our model trained on natural images is able to correctly predict the orientation tuning of neurons in responses to artificial noise stimuli. Finally, we show that we can fully generalize from movies to noise and maintain high predictive performance on both stimulus domains by fine-tuning only the final layer's weights on a network otherwise trained on natural movies. The converse, however, is not true.


Supervised learning sets benchmark for robust spike detection from calcium imaging signals

arXiv.org Machine Learning

A fundamental challenge in calcium imaging has been to infer the timing of action potentials from the measured noisy calcium fluorescence traces. We systematically evaluate a range of spike inference algorithms on a large benchmark dataset recorded from varying neural tissue (V1 and retina) using different calcium indicators (OGB-1 and GCamp6). We show that a new algorithm based on supervised learning in flexible probabilistic models outperforms all previously published techniques, setting a new standard for spike inference from calcium signals. Importantly, it performs better than other algorithms even on datasets not seen during training. Future data acquired in new experimental conditions can easily be used to further improve its spike prediction accuracy and generalization performance. Finally, we show that comparing algorithms on artificial data is not informative about performance on real population imaging data, suggesting that a benchmark dataset may greatly facilitate future algorithmic developments.


Prediction on Spike Data Using Kernel Algorithms

Neural Information Processing Systems

We report and compare the performance of different learning algorithms based on data from cortical recordings. The task is to predict the orientation of visual stimuli from the activity of a population of simultaneously recorded neurons. We compare several ways of improving the coding of the input (i.e., the spike data) as well as of the output (i.e., the orientation), and report the results obtained using different kernel algorithms.