Goto

Collaborating Authors

 Toborek, Vanessa


Cup Curriculum: Curriculum Learning on Model Capacity

arXiv.org Artificial Intelligence

Curriculum learning (CL) aims to increase the performance of a learner on a given task by applying a specialized learning strategy. This strategy focuses on either the dataset, the task, or the model. There is little to no work analysing the possibilities to apply CL on the model capacity in natural language processing. To close this gap, we propose the cup curriculum. In a first phase of training we use a variation of iterative magnitude pruning to reduce model capacity. These weights are reintroduced in a second phase, resulting in the model capacity to show a cup-shaped curve over the training iterations. We empirically evaluate different strategies of the cup curriculum and show that it outperforms early stopping reliably while exhibiting a high resilience to overfitting.


An Empirical Evaluation of the Rashomon Effect in Explainable Machine Learning

arXiv.org Artificial Intelligence

The Rashomon Effect describes the following phenomenon: for a given dataset there may exist many models with equally good performance but with different solution strategies. The Rashomon Effect has implications for Explainable Machine Learning, especially for the comparability of explanations. We provide a unified view on three different comparison scenarios and conduct a quantitative evaluation across different datasets, models, attribution methods, and metrics. We find that hyperparameter-tuning plays a role and that metric selection matters. Our results provide empirical support for previously anecdotal evidence and exhibit challenges for both scientists and practitioners.


A New Aligned Simple German Corpus

arXiv.org Artificial Intelligence

"Leichte Sprache", the German counterpart to Simple English, is a regulated language aiming to facilitate complex written language that would otherwise stay inaccessible to different groups of people. We present a new sentence-aligned monolingual corpus for Simple German -- German. It contains multiple document-aligned sources which we have aligned using automatic sentence-alignment methods. We evaluate our alignments based on a manually labelled subset of aligned documents. The quality of our sentence alignments, as measured by F1-score, surpasses previous work. We publish the dataset under CC BY-SA and the accompanying code under MIT license.