To, Minh-Son
Interactive Medical Image Analysis with Concept-based Similarity Reasoning
Huy, Ta Duc, Tran, Sen Kim, Nguyen, Phan, Tran, Nguyen Hoang, Sam, Tran Bao, Hengel, Anton van den, Liao, Zhibin, Verjans, Johan W., To, Minh-Son, Phan, Vu Minh Hieu
The ability to interpret and intervene model decisions is important for the adoption of computer-aided diagnosis methods in clinical workflows. Recent concept-based methods link the model predictions with interpretable concepts and modify their activation scores to interact with the model. However, these concepts are at the image level, which hinders the model from pinpointing the exact patches the concepts are activated. Alternatively, prototype-based methods learn representations from training image patches and compare these with test image patches, using the similarity scores for final class prediction. However, interpreting the underlying concepts of these patches can be challenging and often necessitates post-hoc guesswork. To address this issue, this paper introduces the novel Concept-based Similarity Reasoning network (CSR), which offers (i) patch-level prototype with intrinsic concept interpretation, and (ii) spatial interactivity. First, the proposed CSR provides localized explanation by grounding prototypes of each concept on image regions. Second, our model introduces novel spatial-level interaction, allowing doctors to engage directly with specific image areas, making it an intuitive and transparent tool for medical imaging. CSR improves upon prior state-of-the-art interpretable methods by up to 4.5\% across three biomedical datasets. Our code is released at https://github.com/tadeephuy/InteractCSR.
Distilling Missing Modality Knowledge from Ultrasound for Endometriosis Diagnosis with Magnetic Resonance Images
Zhang, Yuan, Wang, Hu, Butler, David, To, Minh-Son, Avery, Jodie, Hull, M Louise, Carneiro, Gustavo
Endometriosis is a common chronic gynecological disorder that has many characteristics, including the pouch of Douglas (POD) obliteration, which can be diagnosed using Transvaginal gynecological ultrasound (TVUS) scans and magnetic resonance imaging (MRI). TVUS and MRI are complementary non-invasive endometriosis diagnosis imaging techniques, but patients are usually not scanned using both modalities and, it is generally more challenging to detect POD obliteration from MRI than TVUS. To mitigate this classification imbalance, we propose in this paper a knowledge distillation training algorithm to improve the POD obliteration detection from MRI by leveraging the detection results from unpaired TVUS data. More specifically, our algorithm pre-trains a teacher model to detect POD obliteration from TVUS data, and it also pre-trains a student model with 3D masked auto-encoder using a large amount of unlabelled pelvic 3D MRI volumes. Next, we distill the knowledge from the teacher TVUS POD obliteration detector to train the student MRI model by minimizing a regression loss that approximates the output of the student to the teacher using unpaired TVUS and MRI data. Experimental results on our endometriosis dataset containing TVUS and MRI data demonstrate the effectiveness of our method to improve the POD detection accuracy from MRI.
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Pati, Sarthak, Baid, Ujjwal, Edwards, Brandon, Sheller, Micah, Wang, Shih-Han, Reina, G Anthony, Foley, Patrick, Gruzdev, Alexey, Karkada, Deepthi, Davatzikos, Christos, Sako, Chiharu, Ghodasara, Satyam, Bilello, Michel, Mohan, Suyash, Vollmuth, Philipp, Brugnara, Gianluca, Preetha, Chandrakanth J, Sahm, Felix, Maier-Hein, Klaus, Zenk, Maximilian, Bendszus, Martin, Wick, Wolfgang, Calabrese, Evan, Rudie, Jeffrey, Villanueva-Meyer, Javier, Cha, Soonmee, Ingalhalikar, Madhura, Jadhav, Manali, Pandey, Umang, Saini, Jitender, Garrett, John, Larson, Matthew, Jeraj, Robert, Currie, Stuart, Frood, Russell, Fatania, Kavi, Huang, Raymond Y, Chang, Ken, Balana, Carmen, Capellades, Jaume, Puig, Josep, Trenkler, Johannes, Pichler, Josef, Necker, Georg, Haunschmidt, Andreas, Meckel, Stephan, Shukla, Gaurav, Liem, Spencer, Alexander, Gregory S, Lombardo, Joseph, Palmer, Joshua D, Flanders, Adam E, Dicker, Adam P, Sair, Haris I, Jones, Craig K, Venkataraman, Archana, Jiang, Meirui, So, Tiffany Y, Chen, Cheng, Heng, Pheng Ann, Dou, Qi, Kozubek, Michal, Lux, Filip, Michálek, Jan, Matula, Petr, Keřkovský, Miloš, Kopřivová, Tereza, Dostál, Marek, Vybíhal, Václav, Vogelbaum, Michael A, Mitchell, J Ross, Farinhas, Joaquim, Maldjian, Joseph A, Yogananda, Chandan Ganesh Bangalore, Pinho, Marco C, Reddy, Divya, Holcomb, James, Wagner, Benjamin C, Ellingson, Benjamin M, Cloughesy, Timothy F, Raymond, Catalina, Oughourlian, Talia, Hagiwara, Akifumi, Wang, Chencai, To, Minh-Son, Bhardwaj, Sargam, Chong, Chee, Agzarian, Marc, Falcão, Alexandre Xavier, Martins, Samuel B, Teixeira, Bernardo C A, Sprenger, Flávia, Menotti, David, Lucio, Diego R, LaMontagne, Pamela, Marcus, Daniel, Wiestler, Benedikt, Kofler, Florian, Ezhov, Ivan, Metz, Marie, Jain, Rajan, Lee, Matthew, Lui, Yvonne W, McKinley, Richard, Slotboom, Johannes, Radojewski, Piotr, Meier, Raphael, Wiest, Roland, Murcia, Derrick, Fu, Eric, Haas, Rourke, Thompson, John, Ormond, David Ryan, Badve, Chaitra, Sloan, Andrew E, Vadmal, Vachan, Waite, Kristin, Colen, Rivka R, Pei, Linmin, Ak, Murat, Srinivasan, Ashok, Bapuraj, J Rajiv, Rao, Arvind, Wang, Nicholas, Yoshiaki, Ota, Moritani, Toshio, Turk, Sevcan, Lee, Joonsang, Prabhudesai, Snehal, Morón, Fanny, Mandel, Jacob, Kamnitsas, Konstantinos, Glocker, Ben, Dixon, Luke V M, Williams, Matthew, Zampakis, Peter, Panagiotopoulos, Vasileios, Tsiganos, Panagiotis, Alexiou, Sotiris, Haliassos, Ilias, Zacharaki, Evangelia I, Moustakas, Konstantinos, Kalogeropoulou, Christina, Kardamakis, Dimitrios M, Choi, Yoon Seong, Lee, Seung-Koo, Chang, Jong Hee, Ahn, Sung Soo, Luo, Bing, Poisson, Laila, Wen, Ning, Tiwari, Pallavi, Verma, Ruchika, Bareja, Rohan, Yadav, Ipsa, Chen, Jonathan, Kumar, Neeraj, Smits, Marion, van der Voort, Sebastian R, Alafandi, Ahmed, Incekara, Fatih, Wijnenga, Maarten MJ, Kapsas, Georgios, Gahrmann, Renske, Schouten, Joost W, Dubbink, Hendrikus J, Vincent, Arnaud JPE, Bent, Martin J van den, French, Pim J, Klein, Stefan, Yuan, Yading, Sharma, Sonam, Tseng, Tzu-Chi, Adabi, Saba, Niclou, Simone P, Keunen, Olivier, Hau, Ann-Christin, Vallières, Martin, Fortin, David, Lepage, Martin, Landman, Bennett, Ramadass, Karthik, Xu, Kaiwen, Chotai, Silky, Chambless, Lola B, Mistry, Akshitkumar, Thompson, Reid C, Gusev, Yuriy, Bhuvaneshwar, Krithika, Sayah, Anousheh, Bencheqroun, Camelia, Belouali, Anas, Madhavan, Subha, Booth, Thomas C, Chelliah, Alysha, Modat, Marc, Shuaib, Haris, Dragos, Carmen, Abayazeed, Aly, Kolodziej, Kenneth, Hill, Michael, Abbassy, Ahmed, Gamal, Shady, Mekhaimar, Mahmoud, Qayati, Mohamed, Reyes, Mauricio, Park, Ji Eun, Yun, Jihye, Kim, Ho Sung, Mahajan, Abhishek, Muzi, Mark, Benson, Sean, Beets-Tan, Regina G H, Teuwen, Jonas, Herrera-Trujillo, Alejandro, Trujillo, Maria, Escobar, William, Abello, Ana, Bernal, Jose, Gómez, Jhon, Choi, Joseph, Baek, Stephen, Kim, Yusung, Ismael, Heba, Allen, Bryan, Buatti, John M, Kotrotsou, Aikaterini, Li, Hongwei, Weiss, Tobias, Weller, Michael, Bink, Andrea, Pouymayou, Bertrand, Shaykh, Hassan F, Saltz, Joel, Prasanna, Prateek, Shrestha, Sampurna, Mani, Kartik M, Payne, David, Kurc, Tahsin, Pelaez, Enrique, Franco-Maldonado, Heydy, Loayza, Francis, Quevedo, Sebastian, Guevara, Pamela, Torche, Esteban, Mendoza, Cristobal, Vera, Franco, Ríos, Elvis, López, Eduardo, Velastin, Sergio A, Ogbole, Godwin, Oyekunle, Dotun, Odafe-Oyibotha, Olubunmi, Osobu, Babatunde, Shu'aibu, Mustapha, Dorcas, Adeleye, Soneye, Mayowa, Dako, Farouk, Simpson, Amber L, Hamghalam, Mohammad, Peoples, Jacob J, Hu, Ricky, Tran, Anh, Cutler, Danielle, Moraes, Fabio Y, Boss, Michael A, Gimpel, James, Veettil, Deepak Kattil, Schmidt, Kendall, Bialecki, Brian, Marella, Sailaja, Price, Cynthia, Cimino, Lisa, Apgar, Charles, Shah, Prashant, Menze, Bjoern, Barnholtz-Sloan, Jill S, Martin, Jason, Bakas, Spyridon
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25, 256 MRI scans from 6, 314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.