Tiwary, Saurabh
Interpretable User Satisfaction Estimation for Conversational Systems with Large Language Models
Lin, Ying-Chun, Neville, Jennifer, Stokes, Jack W., Yang, Longqi, Safavi, Tara, Wan, Mengting, Counts, Scott, Suri, Siddharth, Andersen, Reid, Xu, Xiaofeng, Gupta, Deepak, Jauhar, Sujay Kumar, Song, Xia, Buscher, Georg, Tiwary, Saurabh, Hecht, Brent, Teevan, Jaime
Accurate and interpretable user satisfaction estimation (USE) is critical for understanding, evaluating, and continuously improving conversational systems. Users express their satisfaction or dissatisfaction with diverse conversational patterns in both general-purpose (ChatGPT and Bing Copilot) and task-oriented (customer service chatbot) conversational systems. Existing approaches based on featurized ML models or text embeddings fall short in extracting generalizable patterns and are hard to interpret. In this work, we show that LLMs can extract interpretable signals of user satisfaction from their natural language utterances more effectively than embedding-based approaches. Moreover, an LLM can be tailored for USE via an iterative prompting framework using supervision from labeled examples. The resulting method, Supervised Prompting for User satisfaction Rubrics (SPUR), not only has higher accuracy but is more interpretable as it scores user satisfaction via learned rubrics with a detailed breakdown.
GenSERP: Large Language Models for Whole Page Presentation
Zhang, Zhenning, Zhang, Yunan, Ge, Suyu, Weng, Guangwei, Narang, Mridu, Song, Xia, Tiwary, Saurabh
The advent of large language models (LLMs) brings an opportunity to minimize the effort in search engine result page (SERP) organization. In this paper, we propose GenSERP, a framework that leverages LLMs with vision in a few-shot setting to dynamically organize intermediate search results, including generated chat answers, website snippets, multimedia data, knowledge panels into a coherent SERP layout based on a user's query. Our approach has three main stages: (1) An information gathering phase where the LLM continuously orchestrates API tools to retrieve different types of items, and proposes candidate layouts based on the retrieved items, until it's confident enough to generate the final result. (2) An answer generation phase where the LLM populates the layouts with the retrieved content. In this phase, the LLM adaptively optimize the ranking of items and UX configurations of the SERP. Consequently, it assigns a location on the page to each item, along with the UX display details. (3) A scoring phase where an LLM with vision scores all the generated SERPs based on how likely it can satisfy the user. It then send the one with highest score to rendering. GenSERP features two generation paradigms. First, coarse-to-fine, which allow it to approach optimal layout in a more manageable way, (2) beam search, which give it a better chance to hit the optimal solution compared to greedy decoding. Offline experimental results on real-world data demonstrate how LLMs can contextually organize heterogeneous search results on-the-fly and provide a promising user experience.
DUBLIN -- Document Understanding By Language-Image Network
Aggarwal, Kriti, Khandelwal, Aditi, Tanmay, Kumar, Khan, Owais Mohammed, Liu, Qiang, Choudhury, Monojit, Chauhan, Hardik Hansrajbhai, Som, Subhojit, Chaudhary, Vishrav, Tiwary, Saurabh
Visual document understanding is a complex task that involves analyzing both the text and the visual elements in document images. Existing models often rely on manual feature engineering or domain-specific pipelines, which limit their generalization ability across different document types and languages. In this paper, we propose DUBLIN, which is pretrained on web pages using three novel objectives: Masked Document Text Generation Task, Bounding Box Task, and Rendered Question Answering Task, that leverage both the spatial and semantic information in the document images. Our model achieves competitive or state-of-the-art results on several benchmarks, such as Web-Based Structural Reading Comprehension, Document Visual Question Answering, Key Information Extraction, Diagram Understanding, and Table Question Answering. In particular, we show that DUBLIN is the first pixel-based model to achieve an EM of 77.75 and F1 of 84.25 on the WebSRC dataset. We also show that our model outperforms the current pixel-based SOTA models on DocVQA, InfographicsVQA, OCR-VQA and AI2D datasets by 4.6%, 6.5%, 2.6% and 21%, respectively. We also achieve competitive performance on RVL-CDIP document classification. Moreover, we create new baselines for text-based datasets by rendering them as document images to promote research in this direction.
Knowledge-Aware Language Model Pretraining
Rosset, Corby, Xiong, Chenyan, Phan, Minh, Song, Xia, Bennett, Paul, Tiwary, Saurabh
How much knowledge do pretrained language models hold? Recent research observed that pretrained transformers are adept at modeling semantics but it is unclear to what degree they grasp human knowledge, or how to ensure they do so. In this paper we incorporate knowledge-awareness in language model pretraining without changing the transformer architecture, inserting explicit knowledge layers, or adding external storage of semantic information. Rather, we simply signal the existence of entities to the input of the transformer in pretraining, with an entity-extended tokenizer; and at the output, with an additional entity prediction task. Our experiments show that solely by adding these entity signals in pretraining, significantly more knowledge is packed into the transformer parameters: we observe improved language modeling accuracy, factual correctness in LAMA knowledge probing tasks, and semantics in the hidden representations through edge probing.We also show that our knowledge-aware language model (KALM) can serve as a drop-in replacement for GPT-2 models, significantly improving downstream tasks like zero-shot question-answering with no task-related training.
Towards Language Agnostic Universal Representations
Aghajanyan, Armen, Song, Xia, Tiwary, Saurabh
When a bilingual student learns to solve word problems in math, we expect the student to be able to solve these problem in both languages the student is fluent in,even if the math lessons were only taught in one language. However, current representations in machine learning are language dependent. In this work, we present a method to decouple the language from the problem by learning language agnostic representations and therefore allowing training a model in one language and applying to a different one in a zero shot fashion. We learn these representations by taking inspiration from linguistics and formalizing Universal Grammar as an optimization process (Chomsky, 2014; Montague, 1970). We demonstrate the capabilities of these representations by showing that the models trained on a single language using language agnostic representations achieve very similar accuracies in other languages.