Goto

Collaborating Authors

 Tiwari, Mohit


Towards Reinforcement Learning for Exploration of Speculative Execution Vulnerabilities

arXiv.org Artificial Intelligence

--Speculative execution attacks such as Spectre can be used to bypass the security isolation and steal information from other programs. Exploring speculative execution attacks on existing processors requires intensive manual reverse engineering and intimate knowledge of the processor . This reverse engineering-based approach requires extensive human effort, which is slow and not scalable. In this paper, we introduce SpecRL, a framework that utilizes reinforcement learning to explore speculative execution leaks in commercial-of-the shelf microprocessors. This reinforcement learning agent approach requires less reverse engineering effort while still be able to identify speculative execution vulnerabilties.


SoK: A Systems Perspective on Compound AI Threats and Countermeasures

arXiv.org Artificial Intelligence

Large language models (LLMs) used across enterprises often use proprietary models and operate on sensitive inputs and data. The wide range of attack vectors identified in prior research - targeting various software and hardware components used in training and inference - makes it extremely challenging to enforce confidentiality and integrity policies. As we advance towards constructing compound AI inference pipelines that integrate multiple large language models (LLMs), the attack surfaces expand significantly. Attackers now focus on the AI algorithms as well as the software and hardware components associated with these systems. While current research often examines these elements in isolation, we find that combining cross-layer attack observations can enable powerful end-to-end attacks with minimal assumptions about the threat model. Given, the sheer number of existing attacks at each layer, we need a holistic and systemized understanding of different attack vectors at each layer. This SoK discusses different software and hardware attacks applicable to compound AI systems and demonstrates how combining multiple attack mechanisms can reduce the threat model assumptions required for an isolated attack. Next, we systematize the ML attacks in lines with the Mitre Att&ck framework to better position each attack based on the threat model. Finally, we outline the existing countermeasures for both software and hardware layers and discuss the necessity of a comprehensive defense strategy to enable the secure and high-performance deployment of compound AI systems.


NeuroComb: Improving SAT Solving with Graph Neural Networks

arXiv.org Artificial Intelligence

Propositional satisfiability (SAT) is an NP-complete problem that impacts many research fields, such as planning, verification, and security. Despite the remarkable success of modern SAT solvers, scalability still remains a challenge. Main stream modern SAT solvers are based on the Conflict-Driven Clause Learning (CDCL) algorithm. Recent work aimed to enhance CDCL SAT solvers by improving its variable branching heuristics through predictions generated by Graph Neural Networks (GNNs). However, so far this approach either has not made solving more effective, or has required frequent online accesses to substantial GPU resources. Aiming to make GNN improvements practical, this paper proposes an approach called NeuroComb, which builds on two insights: (1) predictions of important variables and clauses can be combined with dynamic branching into a more effective hybrid branching strategy, and (2) it is sufficient to query the neural model only once for the predictions before the SAT solving starts. Implemented as an enhancement to the classic MiniSat solver, NeuroComb allowed it to solve 18.5% more problems on the recent SATCOMP-2020 competition problem set. NeuroComb is therefore a practical approach to improving SAT solving through modern machine learning.