Tiwari, Kshitij
MIRACLE: Inverse Reinforcement and Curriculum Learning Model for Human-inspired Mobile Robot Navigation
Gunukula, Nihal, Tiwari, Kshitij, Bera, Aniket
In emergency scenarios, mobile robots must navigate like humans, interpreting stimuli to locate potential victims rapidly without interfering with first responders. Existing socially-aware navigation algorithms face computational and adaptability challenges. To overcome these, we propose a solution, MIRACLE -- an inverse reinforcement and curriculum learning model, that employs gamified learning to gather stimuli-driven human navigational data. This data is then used to train a Deep Inverse Maximum Entropy Reinforcement Learning model, reducing reliance on demonstrator abilities. Testing reveals a low loss of 2.7717 within a 400-sized environment, signifying human-like response replication. Current databases lack comprehensive stimuli-driven data, necessitating our approach. By doing so, we enable robots to navigate emergency situations with human-like perception, enhancing their life-saving capabilities.
MTAC: Hierarchical Reinforcement Learning-based Multi-gait Terrain-adaptive Quadruped Controller
Shah, Nishaant, Tiwari, Kshitij, Bera, Aniket
Urban search and rescue missions require rapid first response to minimize loss of life and damage. Often, such efforts are assisted by humanitarian robots which need to handle dynamic operational conditions such as uneven and rough terrains, especially during mass casualty incidents like an earthquake. Quadruped robots, owing to their versatile design, have the potential to assist in such scenarios. However, control of quadruped robots in dynamic and rough terrain environments is a challenging problem due to the many degrees of freedom of these robots. Current locomotion controllers for quadrupeds are limited in their ability to produce multiple adaptive gaits, solve tasks in a time and resource-efficient manner, and require tedious training and manual tuning procedures. To address these challenges, we propose MTAC: a multi-gait terrain-adaptive controller, which utilizes a Hierarchical reinforcement learning (HRL) approach while being time and memory-efficient. We show that our proposed method scales well to a diverse range of environments with similar compute times as state-of-the-art methods. Our method showed greater than 75% on most tasks, outperforming previous work on the majority of test cases.
DREAM: Decentralized Reinforcement Learning for Exploration and Efficient Energy Management in Multi-Robot Systems
Patel, Dipam, Pham, Phu, Tiwari, Kshitij, Bera, Aniket
Resource-constrained robots often suffer from energy inefficiencies, underutilized computational abilities due to inadequate task allocation, and a lack of robustness in dynamic environments, all of which strongly affect their performance. This paper introduces DREAM - Decentralized Reinforcement Learning for Exploration and Efficient Energy Management in Multi-Robot Systems, a comprehensive framework that optimizes the allocation of resources for efficient exploration. It advances beyond conventional heuristic-based task planning as observed conventionally. The framework incorporates Operational Range Estimation using Reinforcement Learning to perform exploration and obstacle avoidance in unfamiliar terrains. DREAM further introduces an Energy Consumption Model for goal allocation, thereby ensuring mission completion under constrained resources using a Graph Neural Network. This approach also ensures that the entire Multi-Robot System can survive for an extended period of time for further missions compared to the conventional approach of randomly allocating goals, which compromises one or more agents. Our approach adapts to prioritizing agents in real-time, showcasing remarkable resilience against dynamic environments. This robust solution was evaluated in various simulated environments, demonstrating adaptability and applicability across diverse scenarios. We observed a substantial improvement of about 25% over the baseline method, leading the way for future research in resource-constrained robotics.
HEROES: Unreal Engine-based Human and Emergency Robot Operation Education System
Chaudhary, Anav, Tiwari, Kshitij, Bera, Aniket
Training and preparing first responders and humanitarian robots for Mass Casualty Incidents (MCIs) often poses a challenge owing to the lack of realistic and easily accessible test facilities. While such facilities can offer realistic scenarios post an MCI that can serve training and educational purposes for first responders and humanitarian robots, they are often hard to access owing to logistical constraints. To overcome this challenge, we present HEROES- a versatile Unreal Engine simulator for designing novel training simulations for humans and emergency robots for such urban search and rescue operations. The proposed HEROES simulator is capable of generating synthetic datasets for machine learning pipelines that are used for training robot navigation. This work addresses the necessity for a comprehensive training platform in the robotics community, ensuring pragmatic and efficient preparation for real-world emergency scenarios. The strengths of our simulator lie in its adaptability, scalability, and ability to facilitate collaboration between robot developers and first responders, fostering synergy in developing effective strategies for search and rescue operations in MCIs. We conducted a preliminary user study with an 81% positive response supporting the ability of HEROES to generate sufficiently varied environments, and a 78% positive response affirming the usefulness of the simulation environment of HEROES.
Graph-based Decentralized Task Allocation for Multi-Robot Target Localization
Peng, Juntong, Viswanath, Hrishikesh, Tiwari, Kshitij, Bera, Aniket
We introduce a new approach to address the task allocation problem in a system of heterogeneous robots comprising of Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs). The proposed model, \texttt{\method}, or \textbf{G}raph \textbf{A}ttention \textbf{T}ask \textbf{A}llocato\textbf{R} aggregates information from neighbors in the multi-robot system, with the aim of achieving joint optimality in the target localization efficiency.Being decentralized, our method is highly robust and adaptable to situations where collaborators may change over time, ensuring the continuity of the mission. We also proposed heterogeneity-aware preprocessing to let all the different types of robots collaborate with a uniform model.The experimental results demonstrate the effectiveness and scalability of the proposed approach in a range of simulated scenarios. The model can allocate targets' positions close to the expert algorithm's result, with a median spatial gap less than a unit length. This approach can be used in multi-robot systems deployed in search and rescue missions, environmental monitoring, and disaster response.
ARTEMIS: AI-driven Robotic Triage Labeling and Emergency Medical Information System
Kotha, Sathvika, Viswanath, Hrishikesh, Tiwari, Kshitij, Bera, Aniket
Mass casualty incidents (MCIs) pose a formidable challenge to emergency medical services by overwhelming available resources and personnel. Effective victim assessment is paramount to minimizing casualties during such a crisis. In this paper, we introduce ARTEMIS, an AI-driven Robotic Triage Labeling and Emergency Medical Information System. This system comprises a deep learning model for acuity labeling that is integrated with a robot, that performs the preliminary assessment of injury severity in patients and assigns appropriate triage labels. Additionally, we have developed a frontend (graphical user interface) that is updated by the robots in real time and is accessible to the first responders. To validate the reliability of our proposed algorithmic triage protocol, we employed an off-the-shelf robot kit equipped with sensors for vital sign acquisition. A controlled laboratory simulation of an MCI was conducted to assess the system's performance and effectiveness in real-world scenarios resulting in a triage-level classification accuracy of 92%. This noteworthy achievement underscores the model's proficiency in discerning crucial patterns for accurate triage classification, showcasing its promising potential in healthcare applications.
Visibility-Inspired Models of Touch Sensors for Navigation
Tiwari, Kshitij, Sakcak, Basak, Routray, Prasanna, M., Manivannan, LaValle, Steven M.
This paper introduces mathematical models of \sensors\ for mobile robots based on visibility. Serving a purpose similar to the pinhole camera model for computer vision, the introduced models are expected to provide a useful, idealized characterization of task-relevant information that can be inferred from their outputs or observations. Possible tasks include navigation, localization and mapping when a mobile robot is deployed in an unknown environment. These models allow direct comparisons to be made between traditional depth sensors, highlighting cases in which touch sensing may be interchangeable with time of flight or vision sensors, and characterizing unique advantages provided by touch sensing. The models include contact detection, compression, load bearing, and deflection. The results could serve as a basic building block for innovative touch sensor designs for mobile robot sensor fusion systems.
Hands-on Experience with Gaussian Processes (GPs): Implementing GPs in Python - I
Tiwari, Kshitij
This document serves to complement our website which was developed with the aim of exposing the students to Gaussian Processes (GPs). GPs are non-parametric Bayesian regression models that are largely used by statisticians and geospatial data scientists for modeling spatial data. Several open source libraries spanning from Matlab [1], Python [2], R [3] etc., are already available for simple plug-and-use. The objective of this handout and in turn the website was to allow the users to develop stand-alone GPs in Python by relying on minimal external dependencies. To this end, we only use the default python modules and assist the users in developing their own GPs from scratch giving them an in-depth knowledge of what goes on under the hood. The module covers GP inference using maximum likelihood estimation (MLE) and gives examples of 1D (dummy) spatial data.