Goto

Collaborating Authors

 Tino, Peter


Whole-Genome Phenotype Prediction with Machine Learning: Open Problems in Bacterial Genomics

arXiv.org Artificial Intelligence

The goal of bacterial genome-wide association studies (bGWAS) is to identify genetic variants that influence a trait or phenotype ([31]). These studies traditionally employ statistical methods to perform population genomic analyses to yield a list of candidate genes or genetic markers associated with a phenotype, and have been a significant contributor in uncovering numerous genetic loci that are causally related to a phenotype, e.g., resistance to an antibiotic ([8, 15, 19, 10, 4]). Improvements in whole-genome sequencing techniques have led to the generation of increasing amounts of data, creating an impracticality surrounding functional investigations of all loci individually. However, this up-scaling has lead to the prediction of a greater number of significantly associated loci despite efforts to minimize false discovery rate. Machine learning (ML) algorithms are an obvious successor to bGWAS that may more effectively find signal in genetic noise. To date, existing algorithms have been applied to the data with little to no adaptation ([34, 26, 9, 33]). Researchers are finding that these ML models fail to reliably generalize to out-of-distribution examples ([7], [14]), and frequently identify false positive associations ([26]). In addition, they have found that removing all known causal variables from a model does not meaningfully impact model accuracy ([25]).


On the importance of structural identifiability for machine learning with partially observed dynamical systems

arXiv.org Artificial Intelligence

The successful application of modern machine learning for time series classification is often hampered by limitations in quality and quantity of available training data. To overcome these limitations, available domain expert knowledge in the form of parametrised mechanistic dynamical models can be used whenever it is available and time series observations may be represented as an element from a given class of parametrised dynamical models. This makes the learning process interpretable and allows the modeller to deal with sparsely and irregularly sampled data in a natural way. However, the internal processes of a dynamical model are often only partially observed. This can lead to ambiguity regarding which particular model realization best explains a given time series observation. This problem is well-known in the literature, and a dynamical model with this issue is referred to as structurally unidentifiable. Training a classifier that incorporates knowledge about a structurally unidentifiable dynamical model can negatively influence classification performance. To address this issue, we employ structural identifiability analysis to explicitly relate parameter configurations that are associated with identical system outputs. Using the derived relations in classifier training, we demonstrate that this method significantly improves the classifier's ability to generalize to unseen data on a number of example models from the biomedical domain. This effect is especially pronounced when the number of training instances is limited. Our results demonstrate the importance of accounting for structural identifiability, a topic that has received relatively little attention from the machine learning community.


A distance function for stochastic matrices

arXiv.org Artificial Intelligence

Motivated by information geometry, a distance function on the space of stochastic matrices is advocated. Starting with sequences of Markov chains the Bhattacharyya angle is advocated as the natural tool for comparing both short and long term Markov chain runs. Bounds on the convergence of the distance and mixing times are derived. Guided by the desire to compare different Markov chain models, especially in the setting of healthcare processes, a new distance function on the space of stochastic matrices is presented. It is a true distance measure which has a closed form and is efficient to implement for numerical evaluation. In the case of ergodic Markov chains, it is shown that considering either the Bhattacharyya angle on Markov sequences or the new stochastic matrix distance leads to the same distance between models.


An Interpretable Alternative to Neural Representation Learning for Rating Prediction -- Transparent Latent Class Modeling of User Reviews

arXiv.org Artificial Intelligence

Nowadays, neural network (NN) and deep learning (DL) techniques are widely adopted in many applications, including recommender systems. Given the sparse and stochastic nature of collaborative filtering (CF) data, recent works have critically analyzed the effective improvement of neural-based approaches compared to simpler and often transparent algorithms for recommendation. Previous results showed that NN and DL models can be outperformed by traditional algorithms in many tasks. Moreover, given the largely black-box nature of neural-based methods, interpretable results are not naturally obtained. Following on this debate, we first present a transparent probabilistic model that topologically organizes user and product latent classes based on the review information. In contrast to popular neural techniques for representation learning, we readily obtain a statistical, visualization-friendly tool that can be easily inspected to understand user and product characteristics from a textual-based perspective. Then, given the limitations of common embedding techniques, we investigate the possibility of using the estimated interpretable quantities as model input for a rating prediction task. To contribute to the recent debates, we evaluate our results in terms of both capacity for interpretability and predictive performances in comparison with popular text-based neural approaches. The results demonstrate that the proposed latent class representations can yield competitive predictive performances, compared to popular, but difficult-to-interpret approaches.


Predictive Modeling in the Reservoir Kernel Motif Space

arXiv.org Artificial Intelligence

This work proposes a time series prediction method based on the kernel view of linear reservoirs. In particular, the time series motifs of the reservoir kernel are used as representational basis on which general readouts are constructed. We provide a geometric interpretation of our approach shedding light on how our approach is related to the core reservoir models and in what way the two approaches differ. Empirical experiments then compare predictive performances of our suggested model with those of recent state-of-art transformer based models, as well as the established recurrent network model - LSTM. The experiments are performed on both univariate and multivariate time series and with a variety of prediction horizons. Rather surprisingly we show that even when linear readout is employed, our method has the capacity to outperform transformer models on univariate time series and attain competitive results on multivariate benchmark datasets. We conclude that simple models with easily controllable capacity but capturing enough memory and subsequence structure can outperform potentially over-complicated deep learning models. This does not mean that reservoir motif based models are preferable to other more complex alternatives - rather, when introducing a new complex time series model one should employ as a sanity check simple, but potentially powerful alternatives/baselines such as reservoir models or the models introduced here.


Interpretable Models Capable of Handling Systematic Missingness in Imbalanced Classes and Heterogeneous Datasets

arXiv.org Artificial Intelligence

Application of interpretable machine learning techniques on medical datasets facilitate early and fast diagnoses, along with getting deeper insight into the data. Furthermore, the transparency of these models increase trust among application domain experts. Medical datasets face common issues such as heterogeneous measurements, imbalanced classes with limited sample size, and missing data, which hinder the straightforward application of machine learning techniques. In this paper we present a family of prototype-based (PB) interpretable models which are capable of handling these issues. The models introduced in this contribution show comparable or superior performance to alternative techniques applicable in such situations. However, unlike ensemble based models, which have to compromise on easy interpretation, the PB models here do not. Moreover we propose a strategy of harnessing the power of ensembles while maintaining the intrinsic interpretability of the PB models, by averaging the model parameter manifolds. All the models were evaluated on a synthetic (publicly available dataset) in addition to detailed analyses of two real-world medical datasets (one publicly available). Results indicated that the models and strategies we introduced addressed the challenges of real-world medical data, while remaining computationally inexpensive and transparent, as well as similar or superior in performance compared to their alternatives.


LAAT: Locally Aligned Ant Technique for detecting manifolds of varying density

arXiv.org Machine Learning

Dimensionality reduction and clustering are often used as preliminary steps for many complex machine learning tasks. The presence of noise and outliers can deteriorate the performance of such preprocessing and therefore impair the subsequent analysis tremendously. In manifold learning, several studies indicate solutions for removing background noise or noise close to the structure when the density is substantially higher than that exhibited by the noise. However, in many applications, including astronomical datasets, the density varies alongside manifolds that are buried in a noisy background. We propose a novel method to extract manifolds in the presence of noise based on the idea of Ant colony optimization. In contrast to the existing random walk solutions, our technique captures points which are locally aligned with major directions of the manifold. Moreover, we empirically show that the biologically inspired formulation of ant pheromone reinforces this behavior enabling it to recover multiple manifolds embedded in extremely noisy data clouds. The algorithm's performance is demonstrated in comparison to the state-of-the-art approaches, such as Markov Chain, LLPD, and Disperse, on several synthetic and real astronomical datasets stemming from an N-body simulation of a cosmological volume.


Visualisation and knowledge discovery from interpretable models

arXiv.org Artificial Intelligence

Increasing number of sectors which affect human lives, are using Machine Learning (ML) tools. Hence the need for understanding their working mechanism and evaluating their fairness in decision-making, are becoming paramount, ushering in the era of Explainable AI (XAI). In this contribution we introduced a few intrinsically interpretable models which are also capable of dealing with missing values, in addition to extracting knowledge from the dataset and about the problem. These models are also capable of visualisation of the classifier and decision boundaries: they are the angle based variants of Learning Vector Quantization. We have demonstrated the algorithms on a synthetic dataset and a real-world one (heart disease dataset from the UCI repository). The newly developed classifiers helped in investigating the complexities of the UCI dataset as a multiclass problem. The performance of the developed classifiers were comparable to those reported in literature for this dataset, with additional value of interpretability, when the dataset was treated as a binary class problem.


Dynamical Systems as Temporal Feature Spaces

arXiv.org Machine Learning

Parameterized state space models in the form of recurrent networks are often used in machine learning to learn from data streams exhibiting temporal dependencies. To break the black box nature of such models it is important to understand the dynamical features of the input driving time series that are formed in the state space. We propose a framework for rigorous analysis of such state representations in vanishing memory state space models such as echo state networks (ESN). In particular, we consider the state space a temporal feature space and the readout mapping from the state space a kernel machine operating in that feature space. We show that: (1) The usual ESN strategy of randomly generating input-to-state, as well as state coupling leads to shallow memory time series representations, corresponding to cross-correlation operator with fast exponentially decaying coefficients; (2) Imposing symmetry on dynamic coupling yields a constrained dynamic kernel matching the input time series with straightforward exponentially decaying motifs or exponentially decaying motifs of the highest frequency; (3) Simple cycle high-dimensional reservoir topology specified only through two free parameters can implement deep memory dynamic kernels with a rich variety of matching motifs. We quantify richness of feature representations imposed by dynamic kernels and demonstrate that for dynamic kernel associated with cycle reservoir topology, the kernel richness undergoes a phase transition close to the edge of stability.


A mixture of experts model for predicting persistent weather patterns

arXiv.org Artificial Intelligence

Weather and atmospheric patterns are often persistent. The simplest weather forecasting method is the so-called persistence model, which assumes that the future state of a system will be similar (or equal) to the present state. Machine learning (ML) models are widely used in different weather forecasting applications, but they need to be compared to the persistence model to analyse whether they provide a competitive solution to the problem at hand. In this paper, we devise a new model for predicting low-visibility in airports using the concepts of mixture of experts. Visibility level is coded as two different ordered categorical variables: cloud height and runway visual height. The underlying system in this application is stagnant approximately in 90% of the cases, and standard ML models fail to improve on the performance of the persistence model. Because of this, instead of trying to simply beat the persistence model using ML, we use this persistence as a baseline and learn an ordinal neural network model that refines its results by focusing on learning weather fluctuations. The results show that the proposal outperforms persistence and other ordinal autoregressive models, especially for longer time horizon predictions and for the runway visual height variable.