Goto

Collaborating Authors

 Tibshirani, Robert


LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization

arXiv.org Machine Learning

We introduce LLM-Lasso, a novel framework that leverages large language models (LLMs) to guide feature selection in Lasso $\ell_1$ regression. Unlike traditional methods that rely solely on numerical data, LLM-Lasso incorporates domain-specific knowledge extracted from natural language, enhanced through a retrieval-augmented generation (RAG) pipeline, to seamlessly integrate data-driven modeling with contextual insights. Specifically, the LLM generates penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model. Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model, while less relevant features are assigned higher penalties, reducing their influence. Importantly, LLM-Lasso has an internal validation step that determines how much to trust the contextual knowledge in our prediction pipeline. Hence it addresses key challenges in robustness, making it suitable for mitigating potential inaccuracies or hallucinations from the LLM. In various biomedical case studies, LLM-Lasso outperforms standard Lasso and existing feature selection baselines, all while ensuring the LLM operates without prior access to the datasets. To our knowledge, this is the first approach to effectively integrate conventional feature selection techniques directly with LLM-based domain-specific reasoning.


BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature

arXiv.org Artificial Intelligence

The development of vision-language models (VLMs) is driven by large-scale and diverse multimodal datasets. However, progress toward generalist biomedical VLMs is limited by the lack of annotated, publicly accessible datasets across biology and medicine. Existing efforts are restricted to narrow domains, missing the full diversity of biomedical knowledge encoded in scientific literature. To address this gap, we introduce BIOMEDICA, a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset. Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles. Metadata and expert-guided annotations are also provided. We demonstrate the utility and accessibility of our resource by releasing BMCA-CLIP, a suite of CLIP-style models continuously pre-trained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally. On average, our models achieve state-of-the-art performance across 40 tasks - spanning pathology, radiology, ophthalmology, dermatology, surgery, molecular biology, parasitology, and cell biology - excelling in zero-shot classification with a 6.56% average improvement (as high as 29.8% and 17.5% in dermatology and ophthalmology, respectively), and stronger image-text retrieval, all while using 10x less compute. To foster reproducibility and collaboration, we release our codebase and dataset for the broader research community.


Semiparametric conformal prediction

arXiv.org Machine Learning

Many risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables, for which the prediction algorithm may report correlated non-conformity scores. In this work, we treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure. Drawing from the rich literature on multivariate quantiles and semiparametric statistics, we propose an algorithm to estimate the $1-\alpha$ quantile of the scores, where $\alpha$ is the user-specified miscoverage rate. In particular, we flexibly estimate the joint cumulative distribution function (CDF) of the scores using nonparametric vine copulas and improve the asymptotic efficiency of the quantile estimate using its influence function. The vine decomposition allows our method to scale well to a large number of targets. We report desired coverage and competitive efficiency on a range of real-world regression problems, including those with missing-at-random labels in the calibration set.


MMIL: A novel algorithm for disease associated cell type discovery

arXiv.org Artificial Intelligence

Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease. To address this, we introduce Mixture Modeling for Multiple Instance Learning (MMIL), an expectation maximization method that enables the training and calibration of cell-level classifiers using patient-level labels. Our approach can be used to train e.g. lasso logistic regression models, gradient boosted trees, and neural networks. When applied to clinically-annotated, primary patient samples in Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL), our method accurately identifies cancer cells, generalizes across tissues and treatment timepoints, and selects biologically relevant features. In addition, MMIL is capable of incorporating cell labels into model training when they are known, providing a powerful framework for leveraging both labeled and unlabeled data simultaneously. Mixture Modeling for MIL offers a novel approach for cell classification, with significant potential to advance disease understanding and management, especially in scenarios with unknown gold-standard labels and high dimensionality.


Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank

arXiv.org Artificial Intelligence

Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals, underscoring a critical gap in genetic research. Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data. We evaluate the performance of Group-LASSO INTERaction-NET (glinternet) and pretrained lasso in disease prediction focusing on diverse ancestries in the UK Biobank. Models were trained on data from White British and other ancestries and validated across a cohort of over 96,000 individuals for 8 diseases. Out of 96 models trained, we report 16 with statistically significant incremental predictive performance in terms of ROC-AUC scores (p-value < 0.05), found for diabetes, arthritis, gall stones, cystitis, asthma and osteoarthritis. For the interaction and pretrained models that outperformed the baseline, the PRS score was the primary driver behind prediction. Our findings indicate that both interaction terms and pre-training can enhance prediction accuracy but for a limited set of diseases and moderate improvements in accuracy.


Confidence intervals for the Cox model test error from cross-validation

arXiv.org Machine Learning

Cross-validation (CV) is one of the most widely used techniques in statistical learning for estimating the test error of a model, but its behavior is not yet fully understood. It has been shown that standard confidence intervals for test error using estimates from CV may have coverage below nominal levels. This phenomenon occurs because each sample is used in both the training and testing procedures during CV and as a result, the CV estimates of the errors become correlated. Without accounting for this correlation, the estimate of the variance is smaller than it should be. One way to mitigate this issue is by estimating the mean squared error of the prediction error instead using nested CV. This approach has been shown to achieve superior coverage compared to intervals derived from standard CV. In this work, we generalize the nested CV idea to the Cox proportional hazards model and explore various choices of test error for this setting.


Cooperative learning for multi-view analysis

arXiv.org Machine Learning

With new technologies in biomedicine, we are able to generate and collect data of various modalities, including genomics, epigenomics, transcriptomics, and proteomics (Figure 1A). Integrating heterogeneous features on a single set of observations provides a unique opportunity to gain a comprehensive understanding of an outcome of interest. It offers the potential for making discoveries that are hidden in data analyses of a single modality and achieving more accurate predictions of the outcome (Kristensen et al. 2014, Ritchie et al. 2015, Gligorijević et al. 2016, Karczewski & Snyder 2018, Ma et al. 2020). While "multi-view data analysis" can mean different things, we use it here in the context of supervised learning, where the goal is to fuse different data views to model an outcome of interest. To give a concrete example, assume that a researcher wants to predict cancer outcomes from RNA expression and DNA methylation measurements for a set of patients. The researcher suspects that: (1) both data views could potentially have prognostic value; (2) the two views share some underlying relationship with each other, as DNA methylation regulates gene expression and can repress the expression of tumor suppressor genes or promote the expression of oncogenes. Should the researcher use both data views for downstream prediction, or just use one view or the other?


Cross-validation: what does it estimate and how well does it do it?

arXiv.org Machine Learning

When deploying a predictive model, it is important to understand its prediction accuracy on future test points, so both good point estimates and accurate confidence intervals for prediction error are essential. Cross-validation (CV) is a widely-used approach for these two tasks, but in spite of its seeming simplicity, its operating properties remain opaque. Considering first estimation, it turns out be challenging to precisely state the estimand corresponding to the cross-validation point estimate. In this work, we show that the the estimand of CV is not the accuracy of the model fit on the data at hand, but is instead the average accuracy over many hypothetical data sets. Specifically, we show that the CV estimate of error has larger mean squared error (MSE) when estimating the prediction error of the final model than when estimating the average prediction error of models across many unseen data sets for the special case of linear regression. Turning to confidence intervals for prediction error, we show that naïve intervals based on CV can fail badly, giving coverage far below the nominal level; we provide a simple example soon in Section 1.1. The source of this behavior is the estimation of the variance used to compute the width of the interval: it does not account for the correlation between the error estimates in different folds, which arises because each data point is used for both training and testing. As a result, the estimate of variance is too small and the intervals are too narrow. To address this issue, we develop a modification of cross-validation, nested cross-validation (NCV), that achieves coverage near the nominal level, even in challenging cases where the usual cross-validation intervals have miscoverage rates two to three times larger than the nominal rate.


Feature-weighted elastic net: using "features of features" for better prediction

arXiv.org Machine Learning

In some supervised learning settings, the practitioner might have additional information on the features used for prediction. We propose a new method which leverages this additional information for better prediction. The method, which we call the feature-weighted elastic net ("fwelnet"), uses these "features of features" to adapt the relative penalties on the feature coefficients in the elastic net penalty. In our simulations, fwelnet outperforms the lasso in terms of test mean squared error and usually gives an improvement in true positive rate or false positive rate for feature selection. We also apply this method to early prediction of preeclampsia, where fwelnet outperforms the lasso in terms of 10-fold cross-validated area under the curve (0.86 vs. 0.80). We also provide a connection between fwelnet and the group lasso and suggest how fwelnet might be used for multi-task learning.


A neural network with feature sparsity

arXiv.org Machine Learning

This technology has provided near-human performance on many prediction tasks Geirhos et al. (2017), and left deep marks on entire fields of business and science, to the extent that large computational and engineering efforts are routinely dedicated to neural network training and optimization Dean et al. (2012). However, neural networks are often criticized for their complexity and lack of interpretability. There are many arguments that favor simple models over more complex ones. In many applications (including healthcare Ahmad et al. (2018), Cabitza et al. (2017), insurance and finance Song et al. (2014), Thomas et al. (2002), flight control and other safety-critical tasks (Kurd et al. (2007)), interpretation of the underlying model is a critical requirement. On the other hand, traditional statistical tools, including simple linear models, remain popular because they are simple and explainable, with cheap, efficient computational tools being readily available.