Tian Qi Chen
Neural Ordinary Differential Equations
Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David K. Duvenaud
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
Isolating Sources of Disentanglement in Variational Autoencoders
Tian Qi Chen, Xuechen Li, Roger B. Grosse, David K. Duvenaud
We decompose the evidence lower bound to show the existence of a term measuring the total correlation between latent variables. We use this to motivate the ฮฒ-TCVAE (Total Correlation Variational Autoencoder) algorithm, a refinement and plug-in replacement of the ฮฒ-VAE for learning disentangled representations, requiring no additional hyperparameters during training. We further propose a principled classifier-free measure of disentanglement called the mutual information gap (MIG). We perform extensive quantitative and qualitative experiments, in both restricted and non-restricted settings, and show a strong relation between total correlation and disentanglement, when the model is trained using our framework.
Neural Networks with Cheap Differential Operators
Tian Qi Chen, David K. Duvenaud
Gradients of neural networks can be computed efficiently for any architecture, but some applications require differential operators with higher time complexity. We describe a family of restricted neural network architectures that allow efficient computation of a family of differential operators involving dimension-wise derivatives, used in cases such as computing the divergence. Our proposed architecture has a Jacobian matrix composed of diagonal and hollow (non-diagonal) components. We can then modify the backward computation graph to extract dimension-wise derivatives efficiently with automatic differentiation. We demonstrate these cheap differential operators for solving root-finding subproblems in implicit ODE solvers, exact density evaluation for continuous normalizing flows, and evaluating the Fokker-Planck equation for training stochastic differential equation models.
Neural Networks with Cheap Differential Operators
Tian Qi Chen, David K. Duvenaud
Gradients of neural networks can be computed efficiently for any architecture, but some applications require differential operators with higher time complexity. We describe a family of restricted neural network architectures that allow efficient computation of a family of differential operators involving dimension-wise derivatives, used in cases such as computing the divergence. Our proposed architecture has a Jacobian matrix composed of diagonal and hollow (non-diagonal) components. We can then modify the backward computation graph to extract dimension-wise derivatives efficiently with automatic differentiation. We demonstrate these cheap differential operators for solving root-finding subproblems in implicit ODE solvers, exact density evaluation for continuous normalizing flows, and evaluating the Fokker-Planck equation for training stochastic differential equation models.
Residual Flows for Invertible Generative Modeling
Tian Qi Chen, Jens Behrmann, David K. Duvenaud, Joern-Henrik Jacobsen
Flow-based generative models parameterize probability distributions through an invertible transformation and can be trained by maximum likelihood. Invertible residual networks provide a flexible family of transformations where only Lipschitz conditions rather than strict architectural constraints are needed for enforcing invertibility. However, prior work trained invertible residual networks for density estimation by relying on biased log-density estimates whose bias increased with the network's expressiveness. We give a tractable unbiased estimate of the log density using a "Russian roulette" estimator, and reduce the memory required during training by using an alternative infinite series for the gradient. Furthermore, we improve invertible residual blocks by proposing the use of activation functions that avoid derivative saturation and generalizing the Lipschitz condition to induced mixed norms. The resulting approach, called Residual Flows, achieves state-of-theart performance on density estimation amongst flow-based models, and outperforms networks that use coupling blocks at joint generative and discriminative modeling.
Latent Ordinary Differential Equations for Irregularly-Sampled Time Series
Yulia Rubanova, Tian Qi Chen, David K. Duvenaud
Time series with non-uniform intervals occur in many applications, and are difficult to model using standard recurrent neural networks (RNNs). We generalize RNNs to have continuous-time hidden dynamics defined by ordinary differential equations (ODEs), a model we call ODE-RNNs. Furthermore, we use ODE-RNNs to replace the recognition network of the recently-proposed Latent ODE model. Both ODE-RNNs and Latent ODEs can naturally handle arbitrary time gaps between observations, and can explicitly model the probability of observation times using Poisson processes. We show experimentally that these ODE-based models outperform their RNN-based counterparts on irregularly-sampled data.