Goto

Collaborating Authors

 Tian, Yulun


ROMAN: Open-Set Object Map Alignment for Robust View-Invariant Global Localization

arXiv.org Artificial Intelligence

Global localization is a fundamental capability required for long-term and drift-free robot navigation. However, current methods fail to relocalize when faced with significantly different viewpoints. We present ROMAN (Robust Object Map Alignment Anywhere), a robust global localization method capable of localizing in challenging and diverse environments based on creating and aligning maps of open-set and view-invariant objects. To address localization difficulties caused by feature-sparse or perceptually aliased environments, ROMAN formulates and solves a registration problem between object submaps using a unified graph-theoretic global data association approach that simultaneously accounts for object shape and semantic similarities and a prior on gravity direction. Through a set of challenging large-scale multi-robot or multi-session SLAM experiments in indoor, urban and unstructured/forested environments, we demonstrate that ROMAN achieves a maximum recall 36% higher than other object-based map alignment methods and an absolute trajectory error that is 37% lower than using visual features for loop closures. Our project page can be found at https://acl.mit.edu/ROMAN/.


An Overview of the Burer-Monteiro Method for Certifiable Robot Perception

arXiv.org Artificial Intelligence

This paper presents an overview of the Burer-Monteiro method (BM), a technique that has been applied to solve robot perception problems to certifiable optimality in real-time. BM is often used to solve semidefinite programming relaxations, which can be used to perform global optimization for non-convex perception problems. Specifically, BM leverages the low-rank structure of typical semidefinite programs to dramatically reduce the computational cost of performing optimization. This paper discusses BM in certifiable perception, with three main objectives: (i) to consolidate information from the literature into a unified presentation, (ii) to elucidate the role of the linear independence constraint qualification (LICQ), a concept not yet well-covered in certifiable perception literature, and (iii) to share practical considerations that are discussed among practitioners but not thoroughly covered in the literature. Our general aim is to offer a practical primer for applying BM towards certifiable perception.


Spectral Sparsification for Communication-Efficient Collaborative Rotation and Translation Estimation

arXiv.org Artificial Intelligence

We propose fast and communication-efficient optimization algorithms for multi-robot rotation averaging and translation estimation problems that arise from collaborative simultaneous localization and mapping (SLAM), structure-from-motion (SfM), and camera network localization applications. Our methods are based on theoretical relations between the Hessians of the underlying Riemannian optimization problems and the Laplacians of suitably weighted graphs. We leverage these results to design a collaborative solver in which robots coordinate with a central server to perform approximate second-order optimization, by solving a Laplacian system at each iteration. Crucially, our algorithms permit robots to employ spectral sparsification to sparsify intermediate dense matrices before communication, and hence provide a mechanism to trade off accuracy with communication efficiency with provable guarantees. We perform rigorous theoretical analysis of our methods and prove that they enjoy (local) linear rate of convergence. Furthermore, we show that our methods can be combined with graduated non-convexity to achieve outlier-robust estimation. Extensive experiments on real-world SLAM and SfM scenarios demonstrate the superior convergence rate and communication efficiency of our methods.


Asynchronous and Parallel Distributed Pose Graph Optimization

arXiv.org Artificial Intelligence

We present Asynchronous Stochastic Parallel Pose Graph Optimization (ASAPP), the first asynchronous algorithm for distributed pose graph optimization (PGO) in multi-robot simultaneous localization and mapping. By enabling robots to optimize their local trajectory estimates without synchronization, ASAPP offers resiliency against communication delays and alleviates the need to wait for stragglers in the network. Furthermore, ASAPP can be applied on the rank-restricted relaxations of PGO, a crucial class of non-convex Riemannian optimization problems that underlies recent breakthroughs on globally optimal PGO. Under bounded delay, we establish the global first-order convergence of ASAPP using a sufficiently small stepsize. The derived stepsize depends on the worst-case delay and inherent problem sparsity, and furthermore matches known result for synchronous algorithms when there is no delay. Numerical evaluations on simulated and real-world datasets demonstrate favorable performance compared to state-of-the-art synchronous approach, and show ASAPP's resilience against a wide range of delays in practice.


Resilient and Distributed Multi-Robot Visual SLAM: Datasets, Experiments, and Lessons Learned

arXiv.org Artificial Intelligence

This paper revisits Kimera-Multi, a distributed multi-robot Simultaneous Localization and Mapping (SLAM) system, towards the goal of deployment in the real world. In particular, this paper has three main contributions. First, we describe improvements to Kimera-Multi to make it resilient to large-scale real-world deployments, with particular emphasis on handling intermittent and unreliable communication. Second, we collect and release challenging multi-robot benchmarking datasets obtained during live experiments conducted on the MIT campus, with accurate reference trajectories and maps for evaluation. The datasets include up to 8 robots traversing long distances (up to 8 km) and feature many challenging elements such as severe visual ambiguities (e.g., in underground tunnels and hallways), mixed indoor and outdoor trajectories with different lighting conditions, and dynamic entities (e.g., pedestrians and cars). Lastly, we evaluate the resilience of Kimera-Multi under different communication scenarios, and provide a quantitative comparison with a centralized baseline system. Based on the results from both live experiments and subsequent analysis, we discuss the strengths and weaknesses of Kimera-Multi, and suggest future directions for both algorithm and system design. We release the source code of Kimera-Multi and all datasets to facilitate further research towards the reliable real-world deployment of multi-robot SLAM systems.


Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation

arXiv.org Artificial Intelligence

We present the first distributed optimization algorithm with lazy communication for collaborative geometric estimation, the backbone of modern collaborative simultaneous localization and mapping (SLAM) and structure-from-motion (SfM) applications. Our method allows agents to cooperatively reconstruct a shared geometric model on a central server by fusing individual observations, but without the need to transmit potentially sensitive information about the agents themselves (such as their locations). Furthermore, to alleviate the burden of communication during iterative optimization, we design a set of communication triggering conditions that enable agents to selectively upload a targeted subset of local information that is useful to global optimization. Our approach thus achieves significant communication reduction with minimal impact on optimization performance. As our main theoretical contribution, we prove that our method converges to first-order critical points with a global sublinear convergence rate. Numerical evaluations on bundle adjustment problems from collaborative SLAM and SfM datasets show that our method performs competitively against existing distributed techniques, while achieving up to 78% total communication reduction.