Goto

Collaborating Authors

 Tian, YingLi


Disentangling Object Motion and Occlusion for Unsupervised Multi-frame Monocular Depth

arXiv.org Artificial Intelligence

Conventional self-supervised monocular depth prediction methods are based on a static environment assumption, which leads to accuracy degradation in dynamic scenes due to the mismatch and occlusion problems introduced by object motions. Existing dynamic-object-focused methods only partially solved the mismatch problem at the training loss level. In this paper, we accordingly propose a novel multi-frame monocular depth prediction method to solve these problems at both the prediction and supervision loss levels. Our method, called DynamicDepth, is a new framework trained via a self-supervised cycle consistent learning scheme. A Dynamic Object Motion Disentanglement (DOMD) module is proposed to disentangle object motions to solve the mismatch problem. Moreover, novel occlusion-aware Cost Volume and Re-projection Loss are designed to alleviate the occlusion effects of object motions. Extensive analyses and experiments on the Cityscapes and KITTI datasets show that our method significantly outperforms the state-of-the-art monocular depth prediction methods, especially in the areas of dynamic objects.


Incremental Scene Synthesis

Neural Information Processing Systems

We present a method to incrementally generate complete 2D or 3D scenes with the following properties: (a) it is globally consistent at each step according to a learned scene prior, (b) real observations of a scene can be incorporated while observing global consistency, (c) unobserved regions can be hallucinated locally in consistence with previous observations, hallucinations and global priors, and (d) hallucinations are statistical in nature, i.e., different scenes can be generated from the same observations. To achieve this, we model the virtual scene, where an active agent at each step can either perceive an observed part of the scene or generate a local hallucination. The latter can be interpreted as the agent's expectation at this step through the scene and can be applied to autonomous navigation. It can otherwise sample entirely imagined scenes from prior distributions. Besides autonomous agents, applications include problems where large data is required for building robust real-world applications, but few samples are available.