Goto

Collaborating Authors

 Tian, Yao


LHPF: Look back the History and Plan for the Future in Autonomous Driving

arXiv.org Artificial Intelligence

Decision-making and planning in autonomous driving critically reflect the safety of the system, making effective planning imperative. Current imitation learning-based planning algorithms often merge historical trajectories with present observations to predict future candidate paths. However, these algorithms typically assess the current and historical plans independently, leading to discontinuities in driving intentions and an accumulation of errors with each step in a discontinuous plan. To tackle this challenge, this paper introduces LHPF, an imitation learning planner that integrates historical planning information. Our approach employs a historical intention aggregation module that pools historical planning intentions, which are then combined with a spatial query vector to decode the final planning trajectory. Furthermore, we incorporate a comfort auxiliary task to enhance the human-like quality of the driving behavior. Extensive experiments using both real-world and synthetic data demonstrate that LHPF not only surpasses existing advanced learning-based planners in planning performance but also marks the first instance of a purely learning-based planner outperforming the expert. Additionally, the application of the historical intention aggregation module across various backbones highlights the considerable potential of the proposed method. The code will be made publicly available.


Detect Depression from Social Networks with Sentiment Knowledge Sharing

arXiv.org Artificial Intelligence

Social network plays an important role in propagating people's viewpoints, emotions, thoughts, and fears. Notably, following lockdown periods during the COVID-19 pandemic, the issue of depression has garnered increasing attention, with a significant portion of individuals resorting to social networks as an outlet for expressing emotions. Using deep learning techniques to discern potential signs of depression from social network messages facilitates the early identification of mental health conditions. Current efforts in detecting depression through social networks typically rely solely on analyzing the textual content, overlooking other potential information. In this work, we conduct a thorough investigation that unveils a strong correlation between depression and negative emotional states. The integration of such associations as external knowledge can provide valuable insights for detecting depression. Accordingly, we propose a multi-task training framework, DeSK, which utilizes shared sentiment knowledge to enhance the efficacy of depression detection. Experiments conducted on both Chinese and English datasets demonstrate the cross-lingual effectiveness of DeSK.


BiFSMN: Binary Neural Network for Keyword Spotting

arXiv.org Artificial Intelligence

The deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications. However, computational resources for these networks are significantly constrained since they usually run on-call on edge devices. In this paper, we present BiFSMN, an accurate and extreme-efficient binary neural network for KWS. We first construct a High-frequency Enhancement Distillation scheme for the binarization-aware training, which emphasizes the high-frequency information from the full-precision network's representation that is more crucial for the optimization of the binarized network. Then, to allow the instant and adaptive accuracy-efficiency trade-offs at runtime, we also propose a Thinnable Binarization Architecture to further liberate the acceleration potential of the binarized network from the topology perspective. Moreover, we implement a Fast Bitwise Computation Kernel for BiFSMN on ARMv8 devices which fully utilizes registers and increases instruction throughput to push the limit of deployment efficiency. Extensive experiments show that BiFSMN outperforms existing binarization methods by convincing margins on various datasets and is even comparable with the full-precision counterpart (e.g., less than 3% drop on Speech Commands V1-12). We highlight that benefiting from the thinnable architecture and the optimized 1-bit implementation, BiFSMN can achieve an impressive 22.3x speedup and 15.5x storage-saving on real-world edge hardware. Our code is released at https://github.com/htqin/BiFSMN.


A Learned Index for Exact Similarity Search in Metric Spaces

arXiv.org Artificial Intelligence

Indexing is an effective way to support efficient query processing in large databases. Recently the concept of learned index, which replaces or complements traditional index structures with machine learning models, has been actively explored to reduce storage and search costs. However, accurate and efficient similarity query processing in high-dimensional metric spaces remains to be an open challenge. In this paper, we propose a novel indexing approach called LIMS that uses data clustering, pivot-based data transformation techniques and learned indexes to support efficient similarity query processing in metric spaces. In LIMS, the underlying data is partitioned into clusters such that each cluster follows a relatively uniform data distribution. Data redistribution is achieved by utilizing a small number of pivots for each cluster. Similar data are mapped into compact regions and the mapped values are totally ordinal. Machine learning models are developed to approximate the position of each data record on disk. Efficient algorithms are designed for processing range queries and nearest neighbor queries based on LIMS, and for index maintenance with dynamic updates. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of LIMS compared with traditional indexes and state-of-the-art learned indexes.


The Volcspeech system for the ICASSP 2022 multi-channel multi-party meeting transcription challenge

arXiv.org Artificial Intelligence

This paper describes our submission to ICASSP 2022 Multi-channel Multi-party Meeting Transcription (M2MeT) Challenge. For Track 1, we propose several approaches to empower the clustering-based speaker diarization system to handle overlapped speech. Front-end dereverberation and the direction-of-arrival (DOA) estimation are used to improve the accuracy of speaker diarization. Multi-channel combination and overlap detection are applied to reduce the missed speaker error. A modified DOVER-Lap is also proposed to fuse the results of different systems. We achieve the final DER of 5.79% on the Eval set and 7.23% on the Test set. For Track 2, we develop our system using the Conformer model in a joint CTC-attention architecture. Serialized output training is adopted to multi-speaker overlapped speech recognition. We propose a neural front-end module to model multi-channel audio and train the model end-to-end. Various data augmentation methods are utilized to mitigate over-fitting in the multi-channel multi-speaker E2E system. Transformer language model fusion is developed to achieve better performance. The final CER is 19.2% on the Eval set and 20.8% on the Test set.