Tian, Haoye
In-Context Code-Text Learning for Bimodal Software Engineering
Tang, Xunzhu, Wang, Liran, Liu, Yonghui, Chai, Linzheng, Yang, Jian, Li, Zhoujun, Tian, Haoye, Klein, Jacques, Bissyande, Tegawende F.
Bimodal software analysis initially appeared to be within reach with the advent of large language models. Unfortunately, the complex interplay of natural language text and code in software engineering, presents unique challenges that prevent pretrained models to generalize to a variety of tasks. We postulate that in-context learning for the code-text bimodality is a promising avenue. This paper thus introduces a comprehensive study of in-context code-text learning, focusing on leveraging pretrained CodeLLAMA models. We consider a diverse dataset encompassing 23 software engineering tasks, which we transform in an in-context learning format. To effectively extract informative features, we propose a configurable prompt template. Our proposed pipeline, InCTRL, then unifies prompt learning across various software engineering tasks. Extensive evaluation on the study datasets demonstrates the superiority of INCTRL-models in few-shot performance, surpassing state-of-the-art models including the support model, CodeLLAMA. Typically, we observe that applied to the CodeLLAMA model, INCTRL brings improvements in terms of precision (at least about 12\%) and recall (up to 93.88\%) on various tasks. For example, on the task of program repair, INCTRL improves the BLEU score of CodeLLAMA by 85 points, while for clone detection, INCTRL achieves an improvement of 69 percentage points. Moreover, INCTRL-models offer state-of-the-art performance when using retrieval-augmented generation on individual downstream tasks. Finally, we qualitatively analyze the benefits of INCTRL over CodeLLAMA and open-source all models for broader impact. We make our code and dataset publicly available at: \begin{center} {\url{https://anonymous.4open.science/r/inctrl-B65B}} \end{center}
Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models
Yang, Aidan Z. H., Tian, Haoye, Ye, He, Martins, Ruben, Goues, Claire Le
Software security vulnerabilities allow attackers to perform malicious activities to disrupt software operations. Recent Transformer-based language models have significantly advanced vulnerability detection, surpassing the capabilities of static analysis based deep learning models. However, language models trained solely on code tokens do not capture either the explanation of vulnerability type or the data flow structure information of code, both of which are crucial for vulnerability detection. We propose a novel technique that integrates a multitask sequence-to-sequence LLM with pro-gram control flow graphs encoded as a graph neural network to achieve sequence-to-classification vulnerability detection. We introduce MSIVD, multitask self-instructed fine-tuning for vulnerability detection, inspired by chain-of-thought prompting and LLM self-instruction. Our experiments demonstrate that MSIVD achieves superior performance, outperforming the highest LLM-based vulnerability detector baseline (LineVul), with a F1 score of 0.92 on the BigVul dataset, and 0.48 on the PreciseBugs dataset. By training LLMs and GNNs simultaneously using a combination of code and explanatory metrics of a vulnerable program, MSIVD represents a promising direction for advancing LLM-based vulnerability detection that generalizes to unseen data. Based on our findings, we further discuss the necessity for new labelled security vulnerability datasets, as recent LLMs have seen or memorized prior datasets' held-out evaluation data.
Just-in-Time Security Patch Detection -- LLM At the Rescue for Data Augmentation
Tang, Xunzhu, Chen, Zhenghan, Kim, Kisub, Tian, Haoye, Ezzini, Saad, Klein, Jacques
In the face of growing vulnerabilities found in open-source software, the need to identify {discreet} security patches has become paramount. The lack of consistency in how software providers handle maintenance often leads to the release of security patches without comprehensive advisories, leaving users vulnerable to unaddressed security risks. To address this pressing issue, we introduce a novel security patch detection system, LLMDA, which capitalizes on Large Language Models (LLMs) and code-text alignment methodologies for patch review, data enhancement, and feature combination. Within LLMDA, we initially utilize LLMs for examining patches and expanding data of PatchDB and SPI-DB, two security patch datasets from recent literature. We then use labeled instructions to direct our LLMDA, differentiating patches based on security relevance. Following this, we apply a PTFormer to merge patches with code, formulating hybrid attributes that encompass both the innate details and the interconnections between the patches and the code. This distinctive combination method allows our system to capture more insights from the combined context of patches and code, hence improving detection precision. Finally, we devise a probabilistic batch contrastive learning mechanism within batches to augment the capability of the our LLMDA in discerning security patches. The results reveal that LLMDA significantly surpasses the start of the art techniques in detecting security patches, underscoring its promise in fortifying software maintenance.
Is ChatGPT the Ultimate Programming Assistant -- How far is it?
Tian, Haoye, Lu, Weiqi, Li, Tsz On, Tang, Xunzhu, Cheung, Shing-Chi, Klein, Jacques, Bissyandé, Tegawendé F.
Recently, the ChatGPT LLM has received great attention: it can be used as a bot for discussing source code, prompting it to suggest changes, provide descriptions or even generate code. Typical demonstrations generally focus on existing benchmarks, which may have been used in model training (i.e., data leakage). To assess the feasibility of using an LLM as a useful assistant bot for programmers, we must assess its realistic capabilities on unseen problems as well as its capabilities on various tasks. In this paper, we present an empirical study of ChatGPT's potential as a fully automated programming assistant, focusing on the tasks of code generation, program repair, and code summariziation. The study investigates ChatGPT's performance on common programming problems and compares it with state-of-the-art approaches on two benchmarks. Among several findings, our study shows that ChatGPT is effective in dealing with common programming problems. However, our experiments also reveal limitations in terms of its attention span: detailed descriptions will constrain the focus of ChatGPT and prevent it from leveraging its vast knowledge to solve the actual problem. Surprisingly, we have identified the ability of ChatGPT to reason the original intention of the code. We expect future work to build on this insight for dealing with the open question of the oracle problem. Our findings contribute interesting insights to the development of LLMs for programming assistance, notably by demonstrating the importance of prompt engineering, and providing a better understanding of ChatGPT's practical applications for software engineering.
App Review Driven Collaborative Bug Finding
Tang, Xunzhu, Tian, Haoye, Kong, Pingfan, Liu, Kui, Klein, Jacques, Bissyande, Tegawendé F.
Software development teams generally welcome any effort to expose bugs in their code base. In this work, we build on the hypothesis that mobile apps from the same category (e.g., two web browser apps) may be affected by similar bugs in their evolution process. It is therefore possible to transfer the experience of one historical app to quickly find bugs in its new counterparts. This has been referred to as collaborative bug finding in the literature. Our novelty is that we guide the bug finding process by considering that existing bugs have been hinted within app reviews. Concretely, we design the BugRMSys approach to recommend bug reports for a target app by matching historical bug reports from apps in the same category with user app reviews of the target app. We experimentally show that this approach enables us to quickly expose and report dozens of bugs for targeted apps such as Brave (web browser app). BugRMSys's implementation relies on DistilBERT to produce natural language text embeddings. Our pipeline considers similarities between bug reports and app reviews to identify relevant bugs. We then focus on the app review as well as potential reproduction steps in the historical bug report (from a same-category app) to reproduce the bugs. Overall, after applying BugRMSys to six popular apps, we were able to identify, reproduce and report 20 new bugs: among these, 9 reports have been already triaged, 6 were confirmed, and 4 have been fixed by official development teams, respectively.
MetaTPTrans: A Meta Learning Approach for Multilingual Code Representation Learning
Pian, Weiguo, Peng, Hanyu, Tang, Xunzhu, Sun, Tiezhu, Tian, Haoye, Habib, Andrew, Klein, Jacques, Bissyandé, Tegawendé F.
Representation learning of source code is essential for applying machine learning to software engineering tasks. Learning code representation from a multilingual source code dataset has been shown to be more effective than learning from single-language datasets separately, since more training data from multilingual dataset improves the model's ability to extract language-agnostic information from source code. However, existing multilingual training overlooks the language-specific information which is crucial for modeling source code across different programming languages, while only focusing on learning a unified model with shared parameters among different languages for language-agnostic information modeling. To address this problem, we propose MetaTPTrans, a meta learning approach for multilingual code representation learning. MetaTPTrans generates different parameters for the feature extractor according to the specific programming language type of the input code snippet, enabling the model to learn both language-agnostic and language-specific information with dynamic parameters in the feature extractor. We conduct experiments on the code summarization and code completion tasks to verify the effectiveness of our approach. The results demonstrate the superiority of our approach with significant improvements on state-of-the-art baselines.
AI-driven Mobile Apps: an Explorative Study
Li, Yinghua, Dang, Xueqi, Tian, Haoye, Sun, Tiezhu, Wang, Zhijie, Ma, Lei, Klein, Jacques, Bissyande, Tegawende F.
Recent years have witnessed an astonishing explosion in the evolution of mobile applications powered by AI technologies. The rapid growth of AI frameworks enables the transition of AI technologies to mobile devices, significantly prompting the adoption of AI apps (i.e., apps that integrate AI into their functions) among smartphone devices. In this paper, we conduct the most extensive empirical study on 56,682 published AI apps from three perspectives: dataset characteristics, development issues, and user feedback and privacy. To this end, we build an automated AI app identification tool, AI Discriminator, that detects eligible AI apps from 7,259,232 mobile apps. First, we carry out a dataset analysis, where we explore the AndroZoo large repository to identify AI apps and their core characteristics. Subsequently, we pinpoint key issues in AI app development (e.g., model protection). Finally, we focus on user reviews and user privacy protection. Our paper provides several notable findings. Some essential ones involve revealing the issue of insufficient model protection by presenting the lack of model encryption, and demonstrating the risk of user privacy data being leaked. We published our large-scale AI app datasets to inspire more future research.
Checking Patch Behaviour against Test Specification
Tian, Haoye, Li, Yinghua, Pian, Weiguo, Kaboré, Abdoul Kader, Liu, Kui, Klein, Jacques, Bissyande, Tegawendé F.
Towards predicting patch correctness in APR, we propose a simple, but novel hypothesis on how the link between the patch behaviour and failing test specifications can be drawn: similar failing test cases should require similar patches. We then propose BATS, an unsupervised learning-based system to predict patch correctness by checking patch Behaviour Against failing Test Specification. BATS exploits deep representation learning models for code and patches: for a given failing test case, the yielded embedding is used to compute similarity metrics in the search for historical similar test cases in order to identify the associated applied patches, which are then used as a proxy for assessing generated patch correctness. Experimentally, we first validate our hypothesis by assessing whether ground-truth developer patches cluster together in the same way that their associated failing test cases are clustered. Then, after collecting a large dataset of 1278 plausible patches (written by developers or generated by some 32 APR tools), we use BATS to predict correctness: BATS achieves an AUC between 0.557 to 0.718 and a recall between 0.562 and 0.854 in identifying correct patches. Compared against previous work, we demonstrate that our approach outperforms state-of-the-art performance in patch correctness prediction, without the need for large labeled patch datasets in contrast with prior machine learning-based approaches. While BATS is constrained by the availability of similar test cases, we show that it can still be complementary to existing approaches: used in conjunction with a recent approach implementing supervised learning, BATS improves the overall recall in detecting correct patches. We finally show that BATS can be complementary to the state-of-the-art PATCH-SIM dynamic approach of identifying the correct patches for APR tools.