Tian, Guanzhong
Imit Diff: Semantics Guided Diffusion Transformer with Dual Resolution Fusion for Imitation Learning
Dong, Yuhang, Ge, Haizhou, Zeng, Yupei, Zhang, Jiangning, Tian, Beiwen, Tian, Guanzhong, Zhu, Hongrui, Jia, Yufei, Wang, Ruixiang, Yi, Ran, Zhou, Guyue, Ma, Longhua
Visuomotor imitation learning enables embodied agents to effectively acquire manipulation skills from video demonstrations and robot proprioception. However, as scene complexity and visual distractions increase, existing methods that perform well in simple scenes tend to degrade in performance. To address this challenge, we introduce Imit Diff, a semanstic guided diffusion transformer with dual resolution fusion for imitation learning. Our approach leverages prior knowledge from vision language foundation models to translate high-level semantic instruction into pixel-level visual localization. This information is explicitly integrated into a multi-scale visual enhancement framework, constructed with a dual resolution encoder. Additionally, we introduce an implementation of Consistency Policy within the diffusion transformer architecture to improve both real-time performance and motion smoothness in embodied agent control.We evaluate Imit Diff on several challenging real-world tasks. Due to its task-oriented visual localization and fine-grained scene perception, it significantly outperforms state-of-the-art methods, especially in complex scenes with visual distractions, including zero-shot experiments focused on visual distraction and category generalization. The code will be made publicly available.
Multi-Agent Cooperation via Unsupervised Learning of Joint Intentions
Liu, Shanqi, Liu, Weiwei, Chen, Wenzhou, Tian, Guanzhong, Liu, Yong
The field of cooperative multi-agent reinforcement learning (MARL) has seen widespread use in addressing complex coordination tasks. While value decomposition methods in MARL have been popular, they have limitations in solving tasks with non-monotonic returns, restricting their general application. Our work highlights the significance of joint intentions in cooperation, which can overcome non-monotonic problems and increase the interpretability of the learning process. To this end, we present a novel MARL method that leverages learnable joint intentions. Our method employs a hierarchical framework consisting of a joint intention policy and a behavior policy to formulate the optimal cooperative policy. The joint intentions are autonomously learned in a latent space through unsupervised learning and enable the method adaptable to different agent configurations. Our results demonstrate significant performance improvements in both the StarCraft micromanagement benchmark and challenging MAgent domains, showcasing the effectiveness of our method in learning meaningful joint intentions.
Data-Free Quantization via Mixed-Precision Compensation without Fine-Tuning
Chen, Jun, Bai, Shipeng, Huang, Tianxin, Wang, Mengmeng, Tian, Guanzhong, Liu, Yong
Neural network quantization is a very promising solution in the field of model compression, but its resulting accuracy highly depends on a training/fine-tuning process and requires the original data. This not only brings heavy computation and time costs but also is not conducive to privacy and sensitive information protection. Therefore, a few recent works are starting to focus on data-free quantization. However, data-free quantization does not perform well while dealing with ultra-low precision quantization. Although researchers utilize generative methods of synthetic data to address this problem partially, data synthesis needs to take a lot of computation and time. In this paper, we propose a data-free mixed-precision compensation (DF-MPC) method to recover the performance of an ultra-low precision quantized model without any data and fine-tuning process. By assuming the quantized error caused by a low-precision quantized layer can be restored via the reconstruction of a high-precision quantized layer, we mathematically formulate the reconstruction loss between the pre-trained full-precision model and its layer-wise mixed-precision quantized model. Based on our formulation, we theoretically deduce the closed-form solution by minimizing the reconstruction loss of the feature maps. Since DF-MPC does not require any original/synthetic data, it is a more efficient method to approximate the full-precision model. Experimentally, our DF-MPC is able to achieve higher accuracy for an ultra-low precision quantized model compared to the recent methods without any data and fine-tuning process.