Goto

Collaborating Authors

 Thompson, John


Data Formulator: AI-powered Concept-driven Visualization Authoring

arXiv.org Artificial Intelligence

With most modern visualization tools, authors need to transform their data into tidy formats to create visualizations they want. Because this requires experience with programming or separate data processing tools, data transformation remains a barrier in visualization authoring. To address this challenge, we present a new visualization paradigm, concept binding, that separates high-level visualization intents and low-level data transformation steps, leveraging an AI agent. We realize this paradigm in Data Formulator, an interactive visualization authoring tool. With Data Formulator, authors first define data concepts they plan to visualize using natural languages or examples, and then bind them to visual channels. Data Formulator then dispatches its AI-agent to automatically transform the input data to surface these concepts and generate desired visualizations. When presenting the results (transformed table and output visualizations) from the AI agent, Data Formulator provides feedback to help authors inspect and understand them. A user study with 10 participants shows that participants could learn and use Data Formulator to create visualizations that involve challenging data transformations, and presents interesting future research directions.


Channelformer: Attention based Neural Solution for Wireless Channel Estimation and Effective Online Training

arXiv.org Artificial Intelligence

Dianxin Luan, Student Member, IEEE, John Thompson, Fellow, IEEE Institute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL, UK Email address: Dianxin.Luan@ed.ac.uk, john.thompson@ed.ac.uk Abstract In this paper, we propose an encoder-decoder neural architecture (called Channelformer) to achieve improved channel estimation for orthogonal frequency-division multiplexing (OFDM) waveforms in downlink scenarios. The self-attention mechanism is employed to achieve input precoding for the input features before processing them in the decoder. In particular, we implement multi-head attention in the encoder and a residual convolutional neural architecture as the decoder, respectively. We also employ a customized weight-level pruning to slim the trained neural network with a fine-tuning process, which reduces the computational complexity significantly to realize a low complexity and low latency solution. This enables reductions of up to 70% in the parameters, while maintaining an almost identical performance compared with the complete Channelformer. We also propose an effective online training method based on the fifth generation (5G) new radio (NR) configuration for the modern communication systems, which only needs the available information at the receiver for online training. Using industrial standard channel models, the simulations of attention-based solutions show superior estimation performance compared with other candidate neural network methods for channel estimation. For fifth generation (5G) wireless communication systems and beyond, the orthogonal frequency division multiplexing (OFDM) baseband waveform will be retained [1], which requires precise channel state information in order to compensate for the channel distortion and provide robust communication [2]. Conventional channel estimation methods are the least-squares (LS) and minimum mean squared error (MMSE) approaches [3]. However, with the development of modern communication systems, the LS method cannot achieve precise estimation and the implementation of the MMSE method is challenging as the perfect and complete channel statistics cannot be accessed accurately in advance. Moreover, conventional channel estimation solutions [4] [5] also cannot achieve sufficient performance. Meanwhile, artificial intelligence is impacting on the optimization and configuration of 6G [6]. It motivates the researchers in the field of wireless channel estimation to explore neural network solutions for improved performance [7] [8] [9] [10]. Compared with the conventional methods which aim to find the closed-form expression, neural network methods are typical datadriven methods aiming for a satisfactory and local optimum solution.


Achieving Robust Generalization for Wireless Channel Estimation Neural Networks by Designed Training Data

arXiv.org Artificial Intelligence

In this paper, we propose a method to design the training data that can support robust generalization of trained neural networks to unseen channels. The proposed design that improves the generalization is described and analysed. It avoids the requirement of online training for previously unseen channels, as this is a memory and processing intensive solution, especially for battery powered mobile terminals. To prove the validity of the proposed method, we use the channels modelled by different standards and fading modelling for simulation. We also use an attention-based structure and a convolutional neural network to evaluate the generalization results achieved. Simulation results show that the trained neural networks maintain almost identical performance on the unseen channels.


Federated Learning Enables Big Data for Rare Cancer Boundary Detection

arXiv.org Artificial Intelligence

Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25, 256 MRI scans from 6, 314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.


Low Complexity Channel estimation with Neural Network Solutions

arXiv.org Artificial Intelligence

Research on machine learning for channel estimation, especially neural network solutions for wireless communications, is attracting significant current interest. This is because conventional methods cannot meet the present demands of the high speed communication. In the paper, we deploy a general residual convolutional neural network to achieve channel estimation for the orthogonal frequency-division multiplexing (OFDM) signals in a downlink scenario. Our method also deploys a simple interpolation layer to replace the transposed convolutional layer used in other networks to reduce the computation cost. The proposed method is more easily adapted to different pilot patterns and packet sizes. Compared with other deep learning methods for channel estimation, our results for 3GPP channel models suggest improved mean squared error performance for our approach.


Knowledge Patterns

arXiv.org Artificial Intelligence

This Chapter describes a new technique, called "knowledge patterns", for helping construct axiom-rich, formal ontologies, based on identifying and explicitly representing recurring patterns of knowledge (theory schemata) in the ontology, and then stating how those patterns map onto domain-specific concepts in the ontology. From a modeling perspective, knowledge patterns provide an important insight into the structure of a formal ontology: rather than viewing a formal ontology simply as a list of terms and axioms, knowledge patterns views it as a collection of abstract, modular theories (the "knowledge patterns") plus a collection of modeling decisions stating how different aspects of the world can be modeled using those theories. Knowledge patterns make both those abstract theories and their mappings to the domain of interest explicit, thus making modeling decisions clear, and avoiding some of the ontological confusion that can otherwise arise. In addition, from a computational perspective, knowledge patterns provide a simple and computationally efficient mechanism for facilitating knowledge reuse. We describe the technique and an application built using them, and then critique its strengths and weaknesses. We conclude that this technique enables us to better explicate both the structure and modeling decisions made when constructing a formal axiom-rich ontology.