Thompson, David
Generative AI Is Not Ready for Clinical Use in Patient Education for Lower Back Pain Patients, Even With Retrieval-Augmented Generation
Zhao, Yi-Fei, Bove, Allyn, Thompson, David, Hill, James, Xu, Yi, Ren, Yufan, Hassman, Andrea, Zhou, Leming, Wang, Yanshan
Low back pain (LBP) is a leading cause of disability globally. Following the onset of LBP and subsequent treatment, adequate patient education is crucial for improving functionality and long-term outcomes. Despite advancements in patient education strategies, significant gaps persist in delivering personalized, evidence-based information to patients with LBP. Recent advancements in large language models (LLMs) and generative artificial intelligence (GenAI) have demonstrated the potential to enhance patient education. However, their application and efficacy in delivering educational content to patients with LBP remain underexplored and warrant further investigation. In this study, we introduce a novel approach utilizing LLMs with Retrieval-Augmented Generation (RAG) and few-shot learning to generate tailored educational materials for patients with LBP. Physical therapists manually evaluated our model responses for redundancy, accuracy, and completeness using a Likert scale. In addition, the readability of the generated education materials is assessed using the Flesch Reading Ease score. The findings demonstrate that RAG-based LLMs outperform traditional LLMs, providing more accurate, complete, and readable patient education materials with less redundancy. Having said that, our analysis reveals that the generated materials are not yet ready for use in clinical practice. This study underscores the potential of AI-driven models utilizing RAG to improve patient education for LBP; however, significant challenges remain in ensuring the clinical relevance and granularity of content generated by these models.
The Positronic Economist: A Computational System for Analyzing Economic Mechanisms
Thompson, David (University of British Columbia) | Newman, Neil (University of British Columbia) | Leyton-Brown, Kevin (University of British Columbia)
Computational mechanism analysis is a recent approach to economic analysis in which a mechanism design setting is analyzed entirely by a computer. For games with non-trivial numbers of players and actions, the approach is only feasible when these games can be encoded compactly, e.g., as Action-Graph Games. Such encoding is currently a manual process requiring expert knowledge; our aim is to simplify and automate it. Our contribution, the Positronic Economist is a software system having two parts: (1) a Python-based language for succinctly describing mechanisms; and (2) a system that takes such descriptions as input, automatically identifies computationally useful structure, and produces a compact Action-Graph Game.