Thomas Hofmann
A Domain Agnostic Measure for Monitoring and Evaluating GANs
Paulina Grnarova, Kfir Y. Levy, Aurelien Lucchi, Nathanael Perraudin, Ian Goodfellow, Thomas Hofmann, Andreas Krause
Generative Adversarial Networks (GANs) have shown remarkable results in modeling complex distributions, but their evaluation remains an unsettled issue. Evaluations are essential for: (i) relative assessment of different models and (ii) monitoring the progress of a single model throughout training. The latter cannot be determined by simply inspecting the generator and discriminator loss curves as they behave non-intuitively. We leverage the notion of duality gap from game theory to propose a measure that addresses both (i) and (ii) at a low computational cost. Extensive experiments show the effectiveness of this measure to rank different GAN models and capture the typical GAN failure scenarios, including mode collapse and non-convergent behaviours. This evaluation metric also provides meaningful monitoring on the progression of the loss during training. It highly correlates with FID on natural image datasets, and with domain specific scores for text, sound and cosmology data where FID is not directly suitable. In particular, our proposed metric requires no labels or a pretrained classifier, making it domain agnostic.
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari, Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann, Alejandro Ribeiro
We consider empirical risk minimization for large-scale datasets. We introduce Ada Newton as an adaptive algorithm that uses Newton's method with adaptive sample sizes. The main idea of Ada Newton is to increase the size of the training set by a factor larger than one in a way that the minimization variable for the current training set is in the local neighborhood of the optimal argument of the next training set. This allows to exploit the quadratic convergence property of Newton's method and reach the statistical accuracy of each training set with only one iteration of Newton's method. We show theoretically that we can iteratively increase the sample size while applying single Newton iterations without line search and staying within the statistical accuracy of the regularized empirical risk. In particular, we can double the size of the training set in each iteration when the number of samples is sufficiently large. Numerical experiments on various datasets confirm the possibility of increasing the sample size by factor 2 at each iteration which implies that Ada Newton achieves the statistical accuracy of the full training set with about two passes over the dataset.
Stabilizing Training of Generative Adversarial Networks through Regularization
Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, Thomas Hofmann
Deep generative models based on Generative Adversarial Networks (GANs) have demonstrated impressive sample quality but in order to work they require a careful choice of architecture, parameter initialization, and selection of hyper-parameters. This fragility is in part due to a dimensional mismatch or non-overlapping support between the model distribution and the data distribution, causing their density ratio and the associated f-divergence to be undefined. We overcome this fundamental limitation and propose a new regularization approach with low computational cost that yields a stable GAN training procedure. We demonstrate the effectiveness of this regularizer accross several architectures trained on common benchmark image generation tasks. Our regularization turns GAN models into reliable building blocks for deep learning.