Goto

Collaborating Authors

 Thomas, Philip


Driver Profiling and Bayesian Workload Estimation Using Naturalistic Peripheral Detection Study Data

arXiv.org Artificial Intelligence

Monitoring drivers' mental workload facilitates initiating and maintaining safe interactions with in-vehicle information systems, and thus delivers adaptive human machine interaction with reduced impact on the primary task of driving. In this paper, we tackle the problem of workload estimation from driving performance data. First, we present a novel on-road study for collecting subjective workload data via a modified peripheral detection task in naturalistic settings. Key environmental factors that induce a high mental workload are identified via video analysis, e.g. junctions and behaviour of vehicle in front. Second, a supervised learning framework using state-of-the-art time series classifiers (e.g. convolutional neural network and transform techniques) is introduced to profile drivers based on the average workload they experience during a journey. A Bayesian filtering approach is then proposed for sequentially estimating, in (near) real-time, the driver's instantaneous workload. This computationally efficient and flexible method can be easily personalised to a driver (e.g. incorporate their inferred average workload profile), adapted to driving/environmental contexts (e.g. road type) and extended with data streams from new sources. The efficacy of the presented profiling and instantaneous workload estimation approaches are demonstrated using the on-road study data, showing $F_{1}$ scores of up to 92% and 81%, respectively.


Asymptotically Unbiased Off-Policy Policy Evaluation when Reusing Old Data in Nonstationary Environments

arXiv.org Artificial Intelligence

In this work, we consider the off-policy policy evaluation problem for contextual bandits and finite horizon reinforcement learning in the nonstationary setting. Reusing old data is critical for policy evaluation, but existing estimators that reuse old data introduce large bias such that we can not obtain a valid confidence interval. Inspired from a related field called survey sampling, we introduce a variant of the doubly robust (DR) estimator, called the regression-assisted DR estimator, that can incorporate the past data without introducing a large bias. The estimator unifies several existing off-policy policy evaluation methods and improves on them with the use of auxiliary information and a regression approach. We prove that the new estimator is asymptotically unbiased, and provide a consistent variance estimator to a construct a large sample confidence interval. Finally, we empirically show that the new estimator improves estimation for the current and future policy values, and provides a tight and valid interval estimation in several nonstationary recommendation environments.


Natural Temporal Difference Learning

AAAI Conferences

In this paper we investigate the application of natural gradient descent to Bellman error based reinforcement learning algorithms. This combination is interesting because natural gradient descent is invariant to the parameterization of the value function. This invariance property means that natural gradient descent adapts its update directions to correct for poorly conditioned representations. We present and analyze quadratic and linear time natural temporal difference learning algorithms, and prove that they are covariant. We conclude with experiments which suggest that the natural algorithms can match or outperform their non-natural counterparts using linear function approximation, and drastically improve upon their non-natural counterparts when using non-linear function approximation.


Value Function Approximation in Reinforcement Learning Using the Fourier Basis

AAAI Conferences

We describe the Fourier basis, a linear value function approximation scheme based on the Fourier series. We empirically demonstrate that it performs well compared to radial basis functions and the polynomial basis, the two most popular fixed bases for linear value function approximation, and is competitive with learned proto-value functions.