Goto

Collaborating Authors

Thomas, Janek


Model-Agnostic Approaches to Multi-Objective Simultaneous Hyperparameter Tuning and Feature Selection

arXiv.org Machine Learning

Highly non-linear machine learning algorithms have the capacity to handle large, complex datasets. However, the predictive performance of a model usually critically depends on the choice of multiple hyperparameters. Optimizing these (often) constitutes an expensive black-box problem. Model-based optimization is one state-of-the-art method to address this problem. Furthermore, resulting models often lack interpretability, as models usually contain many active features with non-linear effects and higher-order interactions. One model-agnostic way to enhance interpretability is to enforce sparse solutions through feature selection. It is in many applications desirable to forego a small drop in performance for a substantial gain in sparseness, leading to a natural treatment of feature selection as a multi-objective optimization task. Despite the practical relevance of both hyperparameter optimization and feature selection, they are often carried out separately from each other, which is neither efficient, nor does it take possible interactions between hyperparameters and selected features into account. We present, discuss and compare two algorithmically different approaches for joint and multi-objective hyperparameter optimization and feature selection: The first uses multi-objective model-based optimization to tune a feature filter ensemble. The second is an evolutionary NSGA-II-based wrapper-approach to feature selection which incorporates specialized sampling, mutation and recombination operators for the joint decision space of included features and hyperparameter settings. We compare and discuss the approaches on a variety of benchmark tasks. While model-based optimization needs fewer objective evaluations to achieve good performance, it incurs significant overhead compared to the NSGA-II-based approach. The preferred choice depends on the cost of training the ML model on the given data.


Towards Human Centered AutoML

arXiv.org Artificial Intelligence

Building models from data is an integral part of the majority of data science workflows. While data scientists are often forced to spend the majority of the time available for a given project on data cleaning and exploratory analysis, the time available to practitioners to build actual models from data is often rather short due to time constraints for a given project. AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. In this position paper, we aim to discuss the impact of the rising popularity of such systems and how a user-centered interface for such systems could look like. More importantly, we also want to point out features that are currently missing in those systems and start to explore better usability of such systems from a data-scientists perspective.


Multi-Objective Automatic Machine Learning with AutoxgboostMC

arXiv.org Machine Learning

AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. They often combine techniques from many different sub-fields of machine learning in order to find a model or set of models that optimize a user-supplied criterion, such as predictive performance. The ultimate goal of such systems is to reduce the amount of time spent on menial tasks, or tasks that can be solved better by algorithms while leaving decisions that require human intelligence to the end-user. In recent years, the importance of other criteria, such as fairness and interpretability, and many others have become more and more apparent. Current AutoML frameworks either do not allow to optimize such secondary criteria or only do so by limiting the system's choice of models and preprocessing steps. We propose to optimize additional criteria defined by the user directly to guide the search towards an optimal machine learning pipeline. In order to demonstrate the need and usefulness of our approach, we provide a simple multi-criteria AutoML system and showcase an exemplary application.


An Open Source AutoML Benchmark

arXiv.org Machine Learning

In recent years, an active field of research has developed around automated machine learning (AutoML). Unfortunately, comparing different AutoML systems is hard and often done incorrectly. We introduce an open, ongoing, and extensible benchmark framework which follows best practices and avoids common mistakes. The framework is open-source, uses public datasets and has a website with up-to-date results. We use the framework to conduct a thorough comparison of 4 AutoML systems across 39 datasets and analyze the results.


Wearable-based Parkinson's Disease Severity Monitoring using Deep Learning

arXiv.org Machine Learning

One major challenge in the medication of Parkinson's disease is that the severity of the disease, reflected in the patients' motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models to detect the motor state of such patients based on sensor data from a wearable device. We find that deep learning models consistently outperform a classical machine learning model applied on hand-crafted features in this time series classification task. Furthermore, our results suggest that treating this problem as a regression instead of an ordinal regression or a classification task is most appropriate. For consistent model evaluation and training, we adopt the leave-one-subject-out validation scheme to the training of deep learning models. We also employ a class-weighting scheme to successfully mitigate the problem of high multi-class imbalances in this domain. In addition, we propose a customized performance measure that reflects the requirements of the involved medical staff on the model. To solve the problem of limited availability of high quality training data, we propose a transfer learning technique which helps to improve model performance substantially. Our results suggest that deep learning techniques offer a high potential to autonomously detect motor states of patients with Parkinson's disease.


Automatic Exploration of Machine Learning Experiments on OpenML

arXiv.org Machine Learning

Understanding the influence of hyperparameters on the performance of a machine learning algorithm is an important scientific topic in itself and can help to improve automatic hyperparameter tuning procedures. Unfortunately, experimental meta data for this purpose is still rare. This paper presents a large, free and open dataset addressing this problem, containing results on 38 OpenML data sets, six different machine learning algorithms and many different hyperparameter configurations. Result where generated by an automated random sampling strategy, termed the OpenML Random Bot. Each algorithm was cross-validated up to 20.000 times per dataset with different hyperparameters settings, resulting in a meta dataset of around 2.5 million experiments overall.


Automatic Gradient Boosting

arXiv.org Machine Learning

Automatic machine learning performs predictive modeling with high performing machine learning tools without human interference. This is achieved by making machine learning applications parameter-free, i.e. only a dataset is provided while the complete model selection and model building process is handled internally through (often meta) optimization. Projects like Auto-WEKA and auto-sklearn aim to solve the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem resulting in huge configuration spaces. However, for most real-world applications, the optimization over only a few different key learning algorithms can not only be sufficient, but also potentially beneficial. The latter becomes apparent when one considers that models have to be validated, explained, deployed and maintained. Here, less complex model are often preferred, for validation or efficiency reasons, or even a strict requirement. Automatic gradient boosting simplifies this idea one step further, using only gradient boosting as a single learning algorithm in combination with model-based hyperparameter tuning, threshold optimization and encoding of categorical features. We introduce this general framework as well as a concrete implementation called autoxgboost. It is compared to current AutoML projects on 16 datasets and despite its simplicity is able to achieve comparable results on about half of the datasets as well as performing best on two.


mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions

arXiv.org Machine Learning

We present mlrMBO, a flexible and comprehensive R toolbox for model-based optimization (MBO), also known as Bayesian optimization, which addresses the problem of expensive black-box optimization by approximating the given objective function through a surrogate regression model. It is designed for both single- and multi-objective optimization with mixed continuous, categorical and conditional parameters. Additional features include multi-point batch proposal, parallelization, visualization, logging and error-handling. mlrMBO is implemented in a modular fashion, such that single components can be easily replaced or adapted by the user for specific use cases, e.g., any regression learner from the mlr toolbox for machine learning can be used, and infill criteria and infill optimizers are easily exchangeable. We empirically demonstrate that mlrMBO provides state-of-the-art performance by comparing it on different benchmark scenarios against a wide range of other optimizers, including DiceOptim, rBayesianOptimization, SPOT, SMAC, Spearmint, and Hyperopt.


Probing for sparse and fast variable selection with model-based boosting

arXiv.org Machine Learning

We present a new variable selection method based on model-based gradient boosting and randomly permuted variables. Model-based boosting is a tool to fit a statistical model while performing variable selection at the same time. A drawback of the fitting lies in the need of multiple model fits on slightly altered data (e.g. cross-validation or bootstrap) to find the optimal number of boosting iterations and prevent overfitting. In our proposed approach, we augment the data set with randomly permuted versions of the true variables, so called shadow variables, and stop the step-wise fitting as soon as such a variable would be added to the model. This allows variable selection in a single fit of the model without requiring further parameter tuning. We show that our probing approach can compete with state-of-the-art selection methods like stability selection in a high-dimensional classification benchmark and apply it on gene expression data for the estimation of riboflavin production of Bacillus subtilis.


Stability selection for component-wise gradient boosting in multiple dimensions

arXiv.org Machine Learning

We present a new algorithm for boosting generalized additive models for location, scale and shape (GAMLSS) that allows to incorporate stability selection, an increasingly popular way to obtain stable sets of covariates while controlling the per-family error rate (PFER). The model is fitted repeatedly to subsampled data and variables with high selection frequencies are extracted. To apply stability selection to boosted GAMLSS, we develop a new "noncyclical" fitting algorithm that incorporates an additional selection step of the best-fitting distribution parameter in each iteration. This new algorithms has the additional advantage that optimizing the tuning parameters of boosting is reduced from a multi-dimensional to a one-dimensional problem with vastly decreased complexity. The performance of the novel algorithm is evaluated in an extensive simulation study. We apply this new algorithm to a study to estimate abundance of common eider in Massachusetts, USA, featuring excess zeros, overdispersion, non-linearity and spatio-temporal structures. Eider abundance is estimated via boosted GAMLSS, allowing both mean and overdispersion to be regressed on covariates. Stability selection is used to obtain a sparse set of stable predictors.