Thomas, Janek
AMLB: an AutoML Benchmark
Gijsbers, Pieter, Bueno, Marcos L. P., Coors, Stefan, LeDell, Erin, Poirier, Sébastien, Thomas, Janek, Bischl, Bernd, Vanschoren, Joaquin
Comparing different AutoML frameworks is notoriously challenging and often done incorrectly. We introduce an open and extensible benchmark that follows best practices and avoids common mistakes when comparing AutoML frameworks. We conduct a thorough comparison of 9 well-known AutoML frameworks across 71 classification and 33 regression tasks. The differences between the AutoML frameworks are explored with a multi-faceted analysis, evaluating model accuracy, its trade-offs with inference time, and framework failures. We also use Bradley-Terry trees to discover subsets of tasks where the relative AutoML framework rankings differ. The benchmark comes with an open-source tool that integrates with many AutoML frameworks and automates the empirical evaluation process end-to-end: from framework installation and resource allocation to in-depth evaluation. The benchmark uses public data sets, can be easily extended with other AutoML frameworks and tasks, and has a website with up-to-date results.
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models
Schneider, Lennart, Bischl, Bernd, Thomas, Janek
We present a model-agnostic framework for jointly optimizing the predictive performance and interpretability of supervised machine learning models for tabular data. Interpretability is quantified via three measures: feature sparsity, interaction sparsity of features, and sparsity of non-monotone feature effects. By treating hyperparameter optimization of a machine learning algorithm as a multi-objective optimization problem, our framework allows for generating diverse models that trade off high performance and ease of interpretability in a single optimization run. Efficient optimization is achieved via augmentation of the search space of the learning algorithm by incorporating feature selection, interaction and monotonicity constraints into the hyperparameter search space. We demonstrate that the optimization problem effectively translates to finding the Pareto optimal set of groups of selected features that are allowed to interact in a model, along with finding their optimal monotonicity constraints and optimal hyperparameters of the learning algorithm itself. We then introduce a novel evolutionary algorithm that can operate efficiently on this augmented search space. In benchmark experiments, we show that our framework is capable of finding diverse models that are highly competitive or outperform state-of-the-art XGBoost or Explainable Boosting Machine models, both with respect to performance and interpretability.
MO-DEHB: Evolutionary-based Hyperband for Multi-Objective Optimization
Awad, Noor, Sharma, Ayushi, Muller, Philipp, Thomas, Janek, Hutter, Frank
Hyperparameter optimization (HPO) is a powerful technique for automating the tuning of machine learning (ML) models. However, in many real-world applications, accuracy is only one of multiple performance criteria that must be considered. Optimizing these objectives simultaneously on a complex and diverse search space remains a challenging task. In this paper, we propose MO-DEHB, an effective and flexible multi-objective (MO) optimizer that extends the recent evolutionary Hyperband method DEHB. We validate the performance of MO-DEHB using a comprehensive suite of 15 benchmarks consisting of diverse and challenging MO problems, including HPO, neural architecture search (NAS), and joint NAS and HPO, with objectives including accuracy, latency and algorithmic fairness. A comparative study against state-of-the-art MO optimizers demonstrates that MO-DEHB clearly achieves the best performance across our 15 benchmarks.
A Collection of Quality Diversity Optimization Problems Derived from Hyperparameter Optimization of Machine Learning Models
Schneider, Lennart, Pfisterer, Florian, Thomas, Janek, Bischl, Bernd
The goal of Quality Diversity Optimization is to generate a collection of diverse yet high-performing solutions to a given problem at hand. Typical benchmark problems are, for example, finding a repertoire of robot arm configurations or a collection of game playing strategies. In this paper, we propose a set of Quality Diversity Optimization problems that tackle hyperparameter optimization of machine learning models - a so far underexplored application of Quality Diversity Optimization. Our benchmark problems involve novel feature functions, such as interpretability or resource usage of models. To allow for fast and efficient benchmarking, we build upon YAHPO Gym, a recently proposed open source benchmarking suite for hyperparameter optimization that makes use of high performing surrogate models and returns these surrogate model predictions instead of evaluating the true expensive black box function. We present results of an initial experimental study comparing different Quality Diversity optimizers on our benchmark problems. Furthermore, we discuss future directions and challenges of Quality Diversity Optimization in the context of hyperparameter optimization.
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
Bischl, Bernd, Binder, Martin, Lang, Michel, Pielok, Tobias, Richter, Jakob, Coors, Stefan, Thomas, Janek, Ullmann, Theresa, Becker, Marc, Boulesteix, Anne-Laure, Deng, Difan, Lindauer, Marius
Most machine learning algorithms are configured by one or several hyperparameters that must be carefully chosen and often considerably impact performance. To avoid a time consuming and unreproducible manual trial-and-error process to find well-performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods, e.g., based on resampling error estimation for supervised machine learning, can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods such as grid or random search, evolutionary algorithms, Bayesian optimization, Hyperband and racing. It gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with ML pipelines, runtime improvements, and parallelization.
Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
Pargent, Florian, Pfisterer, Florian, Thomas, Janek, Bischl, Bernd
Because most machine learning (ML) algorithms are designed for numerical inputs, efficiently encoding categorical variables is a crucial aspect during data analysis. An often encountered problem are high cardinality features, i.e. unordered categorical predictor variables with a high number of levels. We study techniques that yield numeric representations of categorical variables which can then be used in subsequent ML applications. We focus on the impact of those techniques on a subsequent algorithm's predictive performance, and -- if possible -- derive best practices on when to use which technique. We conducted a large-scale benchmark experiment, where we compared different encoding strategies together with five ML algorithms (lasso, random forest, gradient boosting, k-nearest neighbours, support vector machine) using datasets from regression, binary- and multiclass- classification settings. Throughout our study, regularized versions of target encoding (i.e. using target predictions based on the feature levels in the training set as a new numerical feature) consistently provided the best results. Traditional encodings that make unreasonable assumptions to map levels to integers (e.g. integer encoding) or to reduce the number of levels (possibly based on target information, e.g. leaf encoding) before creating binary indicator variables (one-hot or dummy encoding) were not as effective.
Multi-Objective Automatic Machine Learning with AutoxgboostMC
Pfisterer, Florian, Coors, Stefan, Thomas, Janek, Bischl, Bernd
AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. They often combine techniques from many different sub-fields of machine learning in order to find a model or set of models that optimize a user-supplied criterion, such as predictive performance. The ultimate goal of such systems is to reduce the amount of time spent on menial tasks, or tasks that can be solved better by algorithms while leaving decisions that require human intelligence to the end-user. In recent years, the importance of other criteria, such as fairness and interpretability, and many others have become more and more apparent. Current AutoML frameworks either do not allow to optimize such secondary criteria or only do so by limiting the system's choice of models and preprocessing steps. We propose to optimize additional criteria defined by the user directly to guide the search towards an optimal machine learning pipeline. In order to demonstrate the need and usefulness of our approach, we provide a simple multi-criteria AutoML system and showcase an exemplary application.
An Open Source AutoML Benchmark
Gijsbers, Pieter, LeDell, Erin, Thomas, Janek, Poirier, Sébastien, Bischl, Bernd, Vanschoren, Joaquin
In recent years, an active field of research has developed around automated machine learning (AutoML). Unfortunately, comparing different AutoML systems is hard and often done incorrectly. We introduce an open, ongoing, and extensible benchmark framework which follows best practices and avoids common mistakes. The framework is open-source, uses public datasets and has a website with up-to-date results. We use the framework to conduct a thorough comparison of 4 AutoML systems across 39 datasets and analyze the results.
Wearable-based Parkinson's Disease Severity Monitoring using Deep Learning
Goschenhofer, Jann, Pfister, Franz MJ, Yuksel, Kamer Ali, Bischl, Bernd, Fietzek, Urban, Thomas, Janek
One major challenge in the medication of Parkinson's disease is that the severity of the disease, reflected in the patients' motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models to detect the motor state of such patients based on sensor data from a wearable device. We find that deep learning models consistently outperform a classical machine learning model applied on hand-crafted features in this time series classification task. Furthermore, our results suggest that treating this problem as a regression instead of an ordinal regression or a classification task is most appropriate. For consistent model evaluation and training, we adopt the leave-one-subject-out validation scheme to the training of deep learning models. We also employ a class-weighting scheme to successfully mitigate the problem of high multi-class imbalances in this domain. In addition, we propose a customized performance measure that reflects the requirements of the involved medical staff on the model. To solve the problem of limited availability of high quality training data, we propose a transfer learning technique which helps to improve model performance substantially. Our results suggest that deep learning techniques offer a high potential to autonomously detect motor states of patients with Parkinson's disease.
Automatic Exploration of Machine Learning Experiments on OpenML
Kühn, Daniel, Probst, Philipp, Thomas, Janek, Bischl, Bernd
Understanding the influence of hyperparameters on the performance of a machine learning algorithm is an important scientific topic in itself and can help to improve automatic hyperparameter tuning procedures. Unfortunately, experimental meta data for this purpose is still rare. This paper presents a large, free and open dataset addressing this problem, containing results on 38 OpenML data sets, six different machine learning algorithms and many different hyperparameter configurations. Result where generated by an automated random sampling strategy, termed the OpenML Random Bot. Each algorithm was cross-validated up to 20.000 times per dataset with different hyperparameters settings, resulting in a meta dataset of around 2.5 million experiments overall.