Thomas, Anna
Learning Compressed Transforms with Low Displacement Rank
Thomas, Anna, Gu, Albert, Dao, Tri, Rudra, Atri, Ré, Christopher
The low displacement rank (LDR) framework for structured matrices represents a matrix through two displacement operators and a low-rank residual. Existing use of LDR matrices in deep learning has applied fixed displacement operators encoding forms of shift invariance akin to convolutions. We introduce a rich class of LDR matrices with more general displacement operators, and explicitly learn over both the operators and the low-rank component. This class generalizes several previous constructions while preserving compression and efficient computation. We prove bounds on the VC dimension of multi-layer neural networks with structured weight matrices and show empirically that our compact parameterization can reduce the sample complexity of learning. When replacing weight layers in fully-connected, convolutional, and recurrent neural networks for image classification and language modeling tasks, our new classes exceed the accuracy of existing compression approaches, and on some tasks even outperform general unstructured layers while using more than 20x fewer parameters.
Learning Compressed Transforms with Low Displacement Rank
Thomas, Anna, Gu, Albert, Dao, Tri, Rudra, Atri, Ré, Christopher
The low displacement rank (LDR) framework for structured matrices represents a matrix through two displacement operators and a low-rank residual. Existing use of LDR matrices in deep learning has applied fixed displacement operators encoding forms of shift invariance akin to convolutions. We introduce a rich class of LDR matrices with more general displacement operators, and explicitly learn over both the operators and the low-rank component. This class generalizes several previous constructions while preserving compression and efficient computation. We prove bounds on the VC dimension of multi-layer neural networks with structured weight matrices and show empirically that our compact parameterization can reduce the sample complexity of learning. When replacing weight layers in fully-connected, convolutional, and recurrent neural networks for image classification and language modeling tasks, our new classes exceed the accuracy of existing compression approaches, and on some tasks even outperform general unstructured layers while using more than 20x fewer parameters.
Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks
Ritchie, Daniel, Thomas, Anna, Hanrahan, Pat, Goodman, Noah
Probabilistic inference algorithms such as Sequential Monte Carlo (SMC) provide powerful tools for constraining procedural models in computer graphics, but they require many samples to produce desirable results. In this paper, we show how to create procedural models which learn how to satisfy constraints. We augment procedural models with neural networks which control how the model makes random choices based on the output it has generated thus far. We call such models neurally-guided procedural models. As a pre-computation, we train these models to maximize the likelihood of example outputs generated via SMC. They are then used as efficient SMC importance samplers, generating high-quality results with very few samples. We evaluate our method on L-system-like models with image-based constraints. Given a desired quality threshold, neurally-guided models can generate satisfactory results up to 10x faster than unguided models.
Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks
Ritchie, Daniel, Thomas, Anna, Hanrahan, Pat, Goodman, Noah D.
Probabilistic inference algorithms such as Sequential Monte Carlo (SMC) provide powerful tools for constraining procedural models in computer graphics, but they require many samples to produce desirable results. In this paper, we show how to create procedural models which learn how to satisfy constraints. We augment procedural models with neural networks which control how the model makes random choices based on the output it has generated thus far. We call such models neurally-guided procedural models. As a pre-computation, we train these models to maximize the likelihood of example outputs generated via SMC. They are then used as efficient SMC importance samplers, generating high-quality results with very few samples. We evaluate our method on L-system-like models with image-based constraints. Given a desired quality threshold, neurally-guided models can generate satisfactory results up to 10x faster than unguided models.