Goto

Collaborating Authors

 Thodoris Lykouris



Learning in Games: Robustness of Fast Convergence

Neural Information Processing Systems

We show that learning algorithms satisfying a low approximate regret property experience fast convergence to approximate optimality in a large class of repeated games. Our property, which simply requires that each learner has small regret compared to a (1 +)-multiplicative approximation to the best action in hindsight, is ubiquitous among learning algorithms; it is satisfied even by the vanilla Hedge forecaster. Our results improve upon recent work of Syrgkanis et al. [28] in a number of ways. We require only that players observe payoffs under other players' realized actions, as opposed to expected payoffs. We further show that convergence occurs with high probability, and show convergence under bandit feedback.


On preserving non-discrimination when combining expert advice

Neural Information Processing Systems

We study the interplay between sequential decision making and avoiding discrimination against protected groups, when examples arrive online and do not follow distributional assumptions. We consider the most basic extension of classical online learning: Given a class of predictors that are individually non-discriminatory with respect to a particular metric, how can we combine them to perform as well as the best predictor, while preserving non-discrimination? Surprisingly we show that this task is unachievable for the prevalent notion of equalized odds that requires equal false negative rates and equal false positive rates across groups. On the positive side, for another notion of non-discrimination, equalized error rates, we show that running separate instances of the classical multiplicative weights algorithm for each group achieves this guarantee. Interestingly, even for this notion, we show that algorithms with stronger performance guarantees than multiplicative weights cannot preserve non-discrimination.