Théberge, François
Network Embedding Exploration Tool (NEExT)
Dehghan, Ashkan, Prałat, Paweł, Théberge, François
Many real-world and artificial systems and processes can be represented as graphs. Some examples of such systems include social networks, financial transactions, supply chains, and molecular structures. In many of these cases, one needs to consider a collection of graphs, rather than a single network. This could be a collection of distinct but related graphs, such as different protein structures or graphs resulting from dynamic processes on the same network. Examples of the latter include the evolution of social networks, community-induced graphs, or ego-nets around various nodes. A significant challenge commonly encountered is the absence of ground-truth labels for graphs or nodes, necessitating the use of unsupervised techniques to analyze such systems. Moreover, even when ground-truth labels are available, many existing graph machine learning methods depend on complex deep learning models, complicating model explainability and interpretability. To address some of these challenges, we have introduced NEExT (Network Embedding Exploration Tool) for embedding collections of graphs via user-defined node features. The advantages of the framework are twofold: (i) the ability to easily define your own interpretable node-based features in view of the task at hand, and (ii) fast embedding of graphs provided by the Vectorizers library. In this paper, we demonstrate the usefulness of NEExT on collections of synthetic and real-world graphs. For supervised tasks, we demonstrate that performance in graph classification tasks could be achieved similarly to other state-of-the-art techniques while maintaining model interpretability. Furthermore, our framework can also be used to generate high-quality embeddings in an unsupervised way, where target variables are not available.
Modularity Based Community Detection in Hypergraphs
Kamiński, Bogumił, Misiorek, Paweł, Prałat, Paweł, Théberge, François
In this paper, we propose a scalable community detection algorithm using hypergraph modularity function, h-Louvain. It is an adaptation of the classical Louvain algorithm in the context of hypergraphs. We observe that a direct application of the Louvain algorithm to optimize the hypergraph modularity function often fails to find meaningful communities. We propose a solution to this issue by adjusting the initial stage of the algorithm via carefully and dynamically tuned linear combination of the graph modularity function of the corresponding two-section graph and the desired hypergraph modularity function. The process is guided by Bayesian optimization of the hyper-parameters of the proposed procedure. Various experiments on synthetic as well as real-world networks are performed showing that this process yields improved results in various regimes.
Hypergraph Artificial Benchmark for Community Detection (h-ABCD)
Kamiński, Bogumił, Prałat, Paweł, Théberge, François
The Artificial Benchmark for Community Detection (ABCD) graph is a recently introduced random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known LFR one, and its main parameter can be tuned to mimic its counterpart in the LFR model, the mixing parameter. In this paper, we introduce hypergraph counterpart of the ABCD model, h-ABCD, which produces random hypergraph with distributions of ground-truth community sizes and degrees following power-law. As in the original ABCD, the new model h-ABCD can produce hypergraphs with various levels of noise. More importantly, the model is flexible and can mimic any desired level of homogeneity of hyperedges that fall into one community. As a result, it can be used as a suitable, synthetic playground for analyzing and tuning hypergraph community detection algorithms.
Artificial Benchmark for Community Detection with Outliers (ABCD+o)
Kamiński, Bogumił, Prałat, Paweł, Théberge, François
One of the most important features of real-world networks is their community structure, as it reveals the internal organization of nodes [10]. In social networks, communities may represent groups by interest; in citation networks, they correspond to related papers; on the Web, communities are formed by pages on related topics, etc. Being able to identify communities in a network could help us to exploit this network more effectively. Grouping like-minded users or similar-looking items together is important for a wide range of applications, including controlling epidemics [12], recommendation systems, anomaly or outlier detection, fraud detection, rumor or fake news detection, etc. [16]. There is also growing literature introducing community-aware centrality measures that exploit both local and global properties of networks [8, 35]. For more discussion around various aspects of mining complex networks, see for example, [31, 23].
Ensemble Clustering for Graphs: Comparisons and Applications
Poulin, Valérie, Théberge, François
We recently proposed a new ensemble clustering algorithm for graphs (ECG) based on the concept of consensus clustering. We validated our approach by replicating a study comparing graph clustering algorithms over benchmark graphs, showing that ECG outperforms the leading algorithms. In this paper, we extend our comparison by considering a wider range of parameters for the benchmark, generating graphs with different properties. We provide new experimental results showing that the ECG algorithm alleviates the well-known resolution limit issue, and that it leads to better stability of the partitions. We also illustrate how the ensemble obtained with ECG can be used to quantify the presence of community structure in the graph, and to zoom in on the sub-graph most closely associated with seed vertices. Finally, we illustrate further applications of ECG by comparing it to previous results for community detection on weighted graphs, and community-aware anomaly detection.
Ensemble Clustering for Graphs
Poulin, Valérie, Théberge, François
We propose an ensemble clustering algorithm for graphs (ECG), which is based on the Louvain algorithm and the concept of consensus clustering. We validate our approach by replicating a recently published study comparing graph clustering algorithms over artificial networks, showing that ECG outperforms the leading algorithms from that study. We also illustrate how the ensemble obtained with ECG can be used to quantify the presence of community structure in the graph.
Comparing Graph Clusterings: Set partition measures vs. Graph-aware measures
Poulin, Valérie, Théberge, François
In this paper, we propose a family of graph partition similarity measures that take the topology of the graph into account. These graph-aware measures are alternatives to using set partition similarity measures that are not specifically designed for graph partitions. The two types of measures, graph-aware and set partition measures, are shown to have opposite behaviors with respect to resolution issues and provide complementary information necessary to assess that two graph partitions are similar.