Tewari, Ambuj
Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs
Tewari, Ambuj, Bartlett, Peter L.
We present an algorithm called Optimistic Linear Programming (OLP) for learning to optimize average reward in an irreducible but otherwise unknown Markov decision process (MDP). OLP uses its experience so far to estimate the MDP. It chooses actions by optimistically maximizing estimated future rewards over a set of next-state transition probabilities that are close to the estimates: a computation that corresponds to solving linear programs. We show that the total expected reward obtained by OLP up to time $T$ is within $C(P)\log T$ of the reward obtained by the optimal policy, where $C(P)$ is an explicit, MDP-dependent constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis with four key differences: OLP is simpler, it does not require knowledge of the supports of transition probabilities and the proof of the regret bound is simpler, but our regret bound is a constant factor larger than the regret of their algorithm. OLP is also similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP is simpler and its regret bound has a better dependence on the size of the MDP.
Sample Complexity of Policy Search with Known Dynamics
Bartlett, Peter L., Tewari, Ambuj
We consider methods that try to find a good policy for a Markov decision process by choosing one from a given class. The policy is chosen based on its empirical performance in simulations. We are interested in conditions on the complexity of the policy class that ensure the success of such simulation based policy search methods. We show that under bounds on the amount of computation involved in computing policies, transition dynamics and rewards, uniform convergence of empirical estimates to true value functions occurs. Previously, such results were derived by assuming boundedness of pseudodimension and Lipschitz continuity. These assumptions and ours are both stronger than the usual combinatorial complexity measures.We show, via minimax inequalities, that this is essential: boundedness of pseudodimension or fat-shattering dimension alone is not sufficient.