Goto

Collaborating Authors

 Teng, Fei


Out-of-Distribution Generalization in Time Series: A Survey

arXiv.org Artificial Intelligence

Time series frequently manifest distribution shifts, diverse latent features, and non-stationary learning dynamics, particularly in open and evolving environments. These characteristics pose significant challenges for out-of-distribution (OOD) generalization. While substantial progress has been made, a systematic synthesis of advancements remains lacking. To address this gap, we present the first comprehensive review of OOD generalization methodologies for time series, organized to delineate the field's evolutionary trajectory and contemporary research landscape. We organize our analysis across three foundational dimensions: data distribution, representation learning, and OOD evaluation. For each dimension, we present several popular algorithms in detail. Furthermore, we highlight key application scenarios, emphasizing their real-world impact. Finally, we identify persistent challenges and propose future research directions. A detailed summary of the methods reviewed for the generalization of OOD in time series can be accessed at https://tsood-generalization.com.


Omnidirectional Multi-Object Tracking

arXiv.org Artificial Intelligence

Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in large field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as wide fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The dataset and code will be made publicly available at https://github.com/xifen523/OmniTrack.


Unifying Light Field Perception with Field of Parallax

arXiv.org Artificial Intelligence

Field of Parallax (FoP)}, a spatial field that distills the common features from different LF representations to provide flexible and consistent support for multi-task learning. FoP is built upon three core features--projection difference, adjacency divergence, and contextual consistency--which are essential for cross-task adaptability. To implement FoP, we design a two-step angular adapter: the first step captures angular-specific differences, while the second step consolidates contextual consistency to ensure robust representation. Leveraging the FoP-based representation, we introduce the LFX framework, the first to handle arbitrary LF representations seamlessly, unifying LF multi-task vision. We evaluated LFX across three different tasks, achieving new state-of-the-art results, compared with previous task-specific architectures: 84.74% in mIoU for semantic segmentation on UrbanLF, 0.84% in AP for object detection on PKU, and 0.030 in MAE and 0.026 in MAE for salient object detection on Duftv2 and PKU, respectively. The source code will be made publicly available at https://github.com/warriordby/LFX.


Beyond Fixed Variables: Expanding-variate Time Series Forecasting via Flat Scheme and Spatio-temporal Focal Learning

arXiv.org Artificial Intelligence

Multivariate Time Series Forecasting (MTSF) has long been a key research focus. Traditionally, these studies assume a fixed number of variables, but in real-world applications, Cyber-Physical Systems often expand as new sensors are deployed, increasing variables in MTSF. In light of this, we introduce a novel task, Expanding-variate Time Series Forecasting (EVTSF). This task presents unique challenges, specifically (1) handling inconsistent data shapes caused by adding new variables, and (2) addressing imbalanced spatio-temporal learning, where expanding variables have limited observed data due to the necessity for timely operation. To address these challenges, we propose STEV, a flexible spatio-temporal forecasting framework. STEV includes a new Flat Scheme to tackle the inconsistent data shape issue, which extends the graph-based spatio-temporal modeling architecture into 1D space by flattening the 2D samples along the variable dimension, making the model variable-scale-agnostic while still preserving dynamic spatial correlations through a holistic graph. We introduce a novel Spatio-temporal Focal Learning strategy that incorporates a negative filter to resolve potential conflicts between contrastive learning and graph representation, and a focal contrastive loss as its core to guide the framework to focus on optimizing the expanding variables. We benchmark EVTSF performance using three real-world datasets and compare it against three potential solutions employing SOTA MTSF models tailored for EVSTF. Experimental results show that STEV significantly outperforms its competitors, particularly on expanding variables. Notably, STEV, with only 5% of observations from the expanding period, is on par with SOTA MTSF models trained with complete observations. Further exploration of various expanding strategies underscores the generalizability of STEV in real-world applications.


Exposing Numeracy Gaps: A Benchmark to Evaluate Fundamental Numerical Abilities in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated impressive capabilities in natural language processing tasks, such as text generation and semantic understanding. However, their performance on numerical reasoning tasks, such as basic arithmetic, numerical retrieval, and magnitude comparison, remains surprisingly poor. This gap arises from their reliance on surface-level statistical patterns rather than understanding numbers as continuous magnitudes. Existing benchmarks primarily focus on either linguistic competence or structured mathematical problem-solving, neglecting fundamental numerical reasoning required in real-world scenarios. To bridge this gap, we propose NumericBench, a comprehensive benchmark to evaluate six fundamental numerical capabilities: number recognition, arithmetic operations, contextual retrieval, comparison, summary, and logical reasoning. NumericBench includes datasets ranging from synthetic number lists to the crawled real-world data, addressing challenges like long contexts, noise, and multi-step reasoning. Extensive experiments on state-of-the-art LLMs, including GPT-4 and DeepSeek, reveal persistent weaknesses in numerical reasoning, highlighting the urgent need to improve numerically-aware language modeling. The benchmark is released in: https://github.com/TreeAI-Lab/NumericBench.


Graph-based Retrieval Augmented Generation for Dynamic Few-shot Text Classification

arXiv.org Artificial Intelligence

Text classification is a fundamental task in natural language processing, pivotal to various applications such as query optimization, data integration, and schema matching. While neural network-based models, such as CNN and BERT, have demonstrated remarkable performance in text classification, their effectiveness heavily relies on abundant labeled training data. This dependency makes these models less effective in dynamic few-shot text classification, where labeled data is scarce, and target labels frequently evolve based on application needs. Recently, large language models (LLMs) have shown promise due to their extensive pretraining and contextual understanding. Current approaches provide LLMs with text inputs, candidate labels, and additional side information (e.g., descriptions) to predict text labels. However, their effectiveness is hindered by the increased input size and the noise introduced through side information processing. To address these limitations, we propose a graph-based online retrieval-augmented generation framework, namely GORAG, for dynamic few-shot text classification. GORAG constructs and maintains an adaptive information graph by extracting side information across all target texts, rather than treating each input independently. It employs a weighted edge mechanism to prioritize the importance and reliability of extracted information and dynamically retrieves relevant context using a minimum-cost spanning tree tailored for each text input. Empirical evaluations demonstrate that GORAG outperforms existing approaches by providing more comprehensive and accurate contextual information.


Wasserstein Markets for Differentially-Private Data

arXiv.org Artificial Intelligence

Data is an increasingly vital component of decision making processes across industries. However, data access raises privacy concerns motivating the need for privacy-preserving techniques such as differential privacy. Data markets provide a means to enable wider access as well as determine the appropriate privacy-utility trade-off. Existing data market frameworks either require a trusted third party to perform computationally expensive valuations or are unable to capture the combinatorial nature of data value and do not endogenously model the effect of differential privacy. This paper addresses these shortcomings by proposing a valuation mechanism based on the Wasserstein distance for differentially-private data, and corresponding procurement mechanisms by leveraging incentive mechanism design theory, for task-agnostic data procurement, and task-specific procurement co-optimisation. The mechanisms are reformulated into tractable mixed-integer second-order cone programs, which are validated with numerical studies.


Can LLMs Learn from Previous Mistakes? Investigating LLMs' Errors to Boost for Reasoning

arXiv.org Artificial Intelligence

Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: \textit{can LLMs learn and benefit from their mistakes, especially for their reasoning? } This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing \textsc{CoTErrorSet}, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) \textbf{Self-rethinking} prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) \textbf{Mistake tuning} involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs' errors, which provides directions that future research needs to overcome. \textsc{CoTErrorSet} will be published soon on \texttt{\url{https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet}}.


Cardinality Estimation on Hyper-relational Knowledge Graphs

arXiv.org Artificial Intelligence

Cardinality Estimation (CE) for query is to estimate the number of results without execution, which is an effective index in query optimization. Recently, CE over has achieved great success in knowledge graphs (KGs) that consist of triple facts. To more precisely represent facts, current researchers propose hyper-relational KGs (HKGs) to represent a triple fact with qualifiers, where qualifiers provide additional context to the fact. However, existing CE methods over KGs achieve unsatisfying performance on HKGs due to the complexity of qualifiers in HKGs. Also, there is only one dataset for HKG query cardinality estimation, i.e., WD50K-QE, which is not comprehensive and only covers limited patterns. The lack of querysets over HKG also becomes a bottleneck to comprehensively investigate CE problems on HKGs. In this work, we first construct diverse and unbiased hyper-relational querysets over three popular HKGs for investigating CE. Besides, we also propose a novel qualifier-attached graph neural network (GNN) model that effectively incorporates qualifier information and adaptively combines outputs from multiple GNN layers, to accurately predict the cardinality. Our experiments illustrate that the proposed hyper-relational query encoder outperforms all state-of-the-art CE methods over three popular HKGs on the diverse and unbiased benchmark.


A Survey of Route Recommendations: Methods, Applications, and Opportunities

arXiv.org Artificial Intelligence

Nowadays, with advanced information technologies deployed citywide, large data volumes and powerful computational resources are intelligentizing modern city development. As an important part of intelligent transportation, route recommendation and its applications are widely used, directly influencing citizens` travel habits. Developing smart and efficient travel routes based on big data (possibly multi-modal) has become a central challenge in route recommendation research. Our survey offers a comprehensive review of route recommendation work based on urban computing. It is organized by the following three parts: 1) Methodology-wise. We categorize a large volume of traditional machine learning and modern deep learning methods. Also, we discuss their historical relations and reveal the edge-cutting progress. 2) Application\-wise. We present numerous novel applications related to route commendation within urban computing scenarios. 3) We discuss current problems and challenges and envision several promising research directions. We believe that this survey can help relevant researchers quickly familiarize themselves with the current state of route recommendation research and then direct them to future research trends.