Goto

Collaborating Authors

 Temelkuran, Burak


DermaSynth: Rich Synthetic Image-Text Pairs Using Open Access Dermatology Datasets

arXiv.org Artificial Intelligence

A major barrier to developing vision large language models (LLMs) in dermatology is the lack of large image--text pairs dataset. We introduce DermaSynth, a dataset comprising of 92,020 synthetic image--text pairs curated from 45,205 images (13,568 clinical and 35,561 dermatoscopic) for dermatology-related clinical tasks. Leveraging state-of-the-art LLMs, using Gemini 2.0, we used clinically related prompts and self-instruct method to generate diverse and rich synthetic texts. Metadata of the datasets were incorporated into the input prompts by targeting to reduce potential hallucinations. The resulting dataset builds upon open access dermatological image repositories (DERM12345, BCN20000, PAD-UFES-20, SCIN, and HIBA) that have permissive CC-BY-4.0 licenses. We also fine-tuned a preliminary Llama-3.2-11B-Vision-Instruct model, DermatoLlama 1.0, on 5,000 samples. We anticipate this dataset to support and accelerate AI research in dermatology. Data and code underlying this work are accessible at https://github.com/abdurrahimyilmaz/DermaSynth.


Precise Hybrid-Actuation Robotic Fiber for Enhanced Cervical Disease Treatment

arXiv.org Artificial Intelligence

Treatment for high-grade precancerous cervical lesions and early-stage cancers, mainly affecting women of reproductive age, often involves fertility-sparing treatment methods. Commonly used local treatments for cervical precancers have shown the risk of leaving a positive cancer margin and engendering subsequent complications according to the precision and depth of excision. An intra-operative device that allows the careful excision of the disease while conserving healthy cervical tissue would potentially enhance such treatment. In this study, we developed a polymer-based robotic fiber measuring 150 mm in length and 1.7 mm in diameter, fabricated using a highly scalable fiber drawing technique. This robotic fiber utilizes a hybrid actuation mechanism, combining electrothermal and tendon-driven actuation mechanisms, thus enabling a maximum motion range of 46 mm from its origin with a sub-100 {\mu}m motion precision. We also developed control algorithms for the actuation methods of this robotic fiber, including predefined path control and telemanipulation, enabling coarse positioning of the fiber tip to the target area followed by a precise scan. The combination of a surgical laser fiber with the robotic fiber allows for high-precision surgical ablation. Additionally, we conducted experiments using a cervical phantom that demonstrated the robotic fiber's ability to access and perform high-precision scans, highlighting its potential for cervical disease treatments and improvement of oncological outcomes.