Teimourpour, Babak
Enhanced Sentiment Analysis of Iranian Restaurant Reviews Utilizing Sentiment Intensity Analyzer & Fuzzy Logic
Rokhva, Shayan, Teimourpour, Babak, Babaei, Romina
This research presents an advanced sentiment analysis framework studied on Iranian restaurant reviews, combining fuzzy logic with conventional sentiment analysis techniques to assess both sentiment polarity and intensity. A dataset of 1266 reviews, alongside corresponding star ratings, was compiled and preprocessed for analysis. Initial sentiment analysis was conducted using the Sentiment Intensity Analyzer (VADER), a rule-based tool that assigns sentiment scores across positive, negative, and neutral categories. However, a noticeable bias toward neutrality often led to an inaccurate representation of sentiment intensity. To mitigate this issue, based on a fuzzy perspective, two refinement techniques were introduced, applying square-root and fourth-root transformations to amplify positive and negative sentiment scores while maintaining neutrality. This led to three distinct methodologies: Approach 1, utilizing unaltered VADER scores; Approach 2, modifying sentiment values using the square root; and Approach 3, applying the fourth root for further refinement. A Fuzzy Inference System incorporating comprehensive fuzzy rules was then developed to process these refined scores and generate a single, continuous sentiment value for each review based on each approach. Comparative analysis, including human supervision and alignment with customer star ratings, revealed that the refined approaches significantly improved sentiment analysis by reducing neutrality bias and better capturing sentiment intensity. Despite these advancements, minor over-amplification and persistent neutrality in domain-specific cases were identified, leading us to propose several future studies to tackle these occasional barriers. The study's methodology and outcomes offer valuable insights for businesses seeking a more precise understanding of consumer sentiment, enhancing sentiment analysis across various industries.
Graph Representation Learning Towards Patents Network Analysis
Heydari, Mohammad, Teimourpour, Babak
Patent analysis has recently been recognized as a powerful technique for large companies worldwide to lend them insight into the age of competition among various industries. This technique is considered a shortcut for developing countries since it can significantly accelerate their technology development. Therefore, as an inevitable process, patent analysis can be utilized to monitor rival companies and diverse industries. This research employed a graph representation learning approach to create, analyze, and find similarities in the patent data registered in the Iranian Official Gazette. The patent records were scrapped and wrangled through the Iranian Official Gazette portal. Afterward, the key entities were extracted from the scrapped patents dataset to create the Iranian patents graph from scratch based on novel natural language processing and entity resolution techniques. Finally, thanks to the utilization of novel graph algorithms and text mining methods, we identified new areas of industry and research from Iranian patent data, which can be used extensively to prevent duplicate patents, familiarity with similar and connected inventions, Awareness of legal entities supporting patents and knowledge of researchers and linked stakeholders in a particular research field.
A Food Recommender System in Academic Environments Based on Machine Learning Models
Ajami, Abolfazl, Teimourpour, Babak
Background: People's health depends on the use of proper diet as an important factor. Today, with the increasing mechanization of people's lives, proper eating habits and behaviors are neglected. On the other hand, food recommendations in the field of health have also tried to deal with this issue. But with the introduction of the Western nutrition style and the advancement of Western chemical medicine, many issues have emerged in the field of disease treatment and nutrition. Recent advances in technology and the use of artificial intelligence methods in information systems have led to the creation of recommender systems in order to improve people's health. Methods: A hybrid recommender system including, collaborative filtering, content-based, and knowledge-based models was used. Machine learning models such as Decision Tree, k-Nearest Neighbors (kNN), AdaBoost, and Bagging were investigated in the field of food recommender systems on 2519 students in the nutrition management system of a university. Student information including profile information for basal metabolic rate, student reservation records, and selected diet type is received online. Among the 15 features collected and after consulting nutrition experts, the most effective features are selected through feature engineering. Using machine learning models based on energy indicators and food selection history by students, food from the university menu is recommended to students. Results: The AdaBoost model has the highest performance in terms of accuracy with a rate of 73.70 percent. Conclusion: Considering the importance of diet in people's health, recommender systems are effective in obtaining useful information from a huge amount of data. Keywords: Recommender system, Food behavior and habits, Machine learning, Classification