Goto

Collaborating Authors

 Teh, Tian Huey


Insights on Disagreement Patterns in Multimodal Safety Perception across Diverse Rater Groups

arXiv.org Artificial Intelligence

AI systems crucially rely on human ratings, but these ratings are often aggregated, obscuring the inherent diversity of perspectives in real-world phenomenon. This is particularly concerning when evaluating the safety of generative AI, where perceptions and associated harms can vary significantly across socio-cultural contexts. While recent research has studied the impact of demographic differences on annotating text, there is limited understanding of how these subjective variations affect multimodal safety in generative AI. To address this, we conduct a large-scale study employing highly-parallel safety ratings of about 1000 text-to-image (T2I) generations from a demographically diverse rater pool of 630 raters balanced across 30 intersectional groups across age, gender, and ethnicity. Our study shows that (1) there are significant differences across demographic groups (including intersectional groups) on how severe they assess the harm to be, and that these differences vary across different types of safety violations, (2) the diverse rater pool captures annotation patterns that are substantially different from expert raters trained on specific set of safety policies, and (3) the differences we observe in T2I safety are distinct from previously documented group level differences in text-based safety tasks. To further understand these varying perspectives, we conduct a qualitative analysis of the open-ended explanations provided by raters. This analysis reveals core differences into the reasons why different groups perceive harms in T2I generations. Our findings underscore the critical need for incorporating diverse perspectives into safety evaluation of generative AI ensuring these systems are truly inclusive and reflect the values of all users.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


Controlling High-Dimensional Data With Sparse Input

arXiv.org Artificial Intelligence

We address the problem of human-in-the-loop control for generating highly-structured data. This task is challenging because existing generative models lack an efficient interface through which users can modify the output. Users have the option to either manually explore a non-interpretable latent space, or to laboriously annotate the data with conditioning labels. To solve this, we introduce a novel framework whereby an encoder maps a sparse, human interpretable control space onto the latent space of a generative model. We apply this framework to the task of controlling prosody in text-to-speech synthesis. We propose a model, called Multiple-Instance CVAE (MICVAE), that is specifically designed to encode sparse prosodic features and output complete waveforms. We show empirically that MICVAE displays desirable qualities of a sparse human-in-the-loop control mechanism: efficiency, robustness, and faithfulness. With even a very small number of input values (~4), MICVAE enables users to improve the quality of the output significantly, in terms of listener preference (4:1).


Incremental Text to Speech for Neural Sequence-to-Sequence Models using Reinforcement Learning

arXiv.org Machine Learning

Modern approaches to text to speech require the entire input character sequence to be processed before any audio is synthesised. This latency limits the suitability of such models for time-sensitive tasks like simultaneous interpretation. Interleaving the action of reading a character with that of synthesising audio reduces this latency. However, the order of this sequence of interleaved actions varies across sentences, which raises the question of how the actions should be chosen. We propose a reinforcement learning based framework to train an agent to make this decision. We compare our performance against that of deterministic, rule-based systems. Our results demonstrate that our agent successfully balances the trade-off between the latency of audio generation and the quality of synthesised audio. More broadly, we show that neural sequence-to-sequence models can be adapted to run in an incremental manner.