Not enough data to create a plot.
Try a different view from the menu above.
Tebbutt, Will
Aardvark weather: end-to-end data-driven weather forecasting
Vaughan, Anna, Markou, Stratis, Tebbutt, Will, Requeima, James, Bruinsma, Wessel P., Andersson, Tom R., Herzog, Michael, Lane, Nicholas D., Chantry, Matthew, Hosking, J. Scott, Turner, Richard E.
Weather forecasting is critical for a range of human activities including transportation, agriculture, industry, as well as the safety of the general public. Machine learning models have the potential to transform the complex weather prediction pipeline, but current approaches still rely on numerical weather prediction (NWP) systems, limiting forecast speed and accuracy. Here we demonstrate that a machine learning model can replace the entire operational NWP pipeline. Aardvark Weather, an end-to-end data-driven weather prediction system, ingests raw observations and outputs global gridded forecasts and local station forecasts. Further, it can be optimised end-to-end to maximise performance over quantities of interest. Global forecasts outperform an operational NWP baseline for multiple variables and lead times. Local station forecasts are skillful up to ten days lead time and achieve comparable and often lower errors than a post-processed global NWP baseline and a state-of-the-art end-to-end forecasting system with input from human forecasters. These forecasts are produced with a remarkably simple neural process model using just 8% of the input data and three orders of magnitude less compute than existing NWP and hybrid AI-NWP methods. We anticipate that Aardvark Weather will be the starting point for a new generation of end-to-end machine learning models for medium-range forecasting that will reduce computational costs by orders of magnitude and enable the rapid and cheap creation of bespoke models for users in a variety of fields, including for the developing world where state-of-the-art local models are not currently available.
Ice Core Dating using Probabilistic Programming
Ravuri, Aditya, Andersson, Tom R., Kazlauskaite, Ieva, Tebbutt, Will, Turner, Richard E., Hosking, J. Scott, Lawrence, Neil D., Kaiser, Markus
However, before ice core data can have scientific value, the chronology must be inferred by estimating the age as a function of depth. Under certain conditions, chemicals locked in the ice display quasi-periodic cycles that delineate annual layers. Manually counting these noisy seasonal patterns to infer the chronology can be an imperfect and time-consuming process, and does not capture uncertainty in a principled fashion. In addition, several ice cores may be collected from a region, introducing an aspect of spatial correlation between them. We present an exploration of the use of probabilistic models for automatic dating of ice cores, using probabilistic programming to showcase its use for prototyping, automatic inference and maintainability, and demonstrate common failure modes of these tools.
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Tebbutt, Will, Solin, Arno, Turner, Richard E.
Gaussian processes (GPs) are important probabilistic tools for inference and learning in spatio-temporal modelling problems such as those in climate science and epidemiology. However, existing GP approximations do not simultaneously support large numbers of off-the-grid spatial data-points and long time-series which is a hallmark of many applications. Pseudo-point approximations, one of the gold-standard methods for scaling GPs to large data sets, are well suited for handling off-the-grid spatial data. However, they cannot handle long temporal observation horizons effectively reverting to cubic computational scaling in the time dimension. State space GP approximations are well suited to handling temporal data, if the temporal GP prior admits a Markov form, leading to linear complexity in the number of temporal observations, but have a cubic spatial cost and cannot handle off-the-grid spatial data. In this work we show that there is a simple and elegant way to combine pseudo-point methods with the state space GP approximation framework to get the best of both worlds. The approach hinges on a surprising conditional independence property which applies to space--time separable GPs. We demonstrate empirically that the combined approach is more scalable and applicable to a greater range of spatio-temporal problems than either method on its own.
Sparse Gaussian Process Variational Autoencoders
Ashman, Matthew, So, Jonathan, Tebbutt, Will, Fortuin, Vincent, Pearce, Michael, Turner, Richard E.
Large, multidimensional spatiotemporal datasets are omnipresent in modern science and engineering. An effective framework for handling such data are Gaussian process deep generative models (GP-DGMs), which employ GP priors over the latent variables of DGMs. Existing approaches for performing inference in GP-DGMs do not support sparse GP approximations based on inducing points, which are essential for the computational efficiency of GPs, nor do they handle missing data - a natural occurrence in many spatiotemporal datasets - in a principled manner. We address these shortcomings with the development of the sparse Gaussian process variational autoencoder (SGP-VAE), characterised by the use of partial inference networks for parameterising sparse GP approximations. Leveraging the benefits of amortised variational inference, the SGP-VAE enables inference in multi-output sparse GPs on previously unobserved data with no additional training. The SGP-VAE is evaluated in a variety of experiments where it outperforms alternative approaches including multi-output GPs and structured VAEs. Increasing amounts of large, multidimensional datasets that exhibit strong spatiotemporal dependencies are arising from a wealth of domains, including earth, social and environmental sciences (Atluri et al., 2018). For example, consider modelling daily atmospheric measurements taken by weather stations situated across the globe. Such data are (1) large in number; (2) subject to strong spatiotemporal dependencies; (3) multidimensional; and (4) non-Gaussian with complex dependencies across outputs.
The Gaussian Process Autoregressive Regression Model (GPAR)
Requeima, James, Tebbutt, Will, Bruinsma, Wessel, Turner, Richard E.
Multi-output regression models must exploit dependencies between outputs to maximise predictive performance. The application of Gaussian processes (GPs) to this setting typically yields models that are computationally demanding and have limited representational power. We present the Gaussian Process Autoregressive Regression (GPAR) model, a scalable multi-output GP model that is able to capture nonlinear, possibly input-varying, dependencies between outputs in a simple and tractable way: the product rule is used to decompose the joint distribution over the outputs into a set of conditionals, each of which is modelled by a standard GP. GPAR's efficacy is demonstrated on a variety of synthetic and real-world problems, outperforming existing GP models and achieving state-of-the-art performance on the tasks with existing benchmarks.