Goto

Collaborating Authors

 Taylor, Matt


Co-designing Large Language Model Tools for Project-Based Learning with K12 Educators

arXiv.org Artificial Intelligence

The emergence of generative AI, particularly large language models (LLMs), has opened the door for student-centered and active learning methods like project-based learning (PBL). However, PBL poses practical implementation challenges for educators around project design and management, assessment, and balancing student guidance with student autonomy. The following research documents a co-design process with interdisciplinary K-12 teachers to explore and address the current PBL challenges they face. Through teacher-driven interviews, collaborative workshops, and iterative design of wireframes, we gathered evidence for ways LLMs can support teachers in implementing high-quality PBL pedagogy by automating routine tasks and enhancing personalized learning. Teachers in the study advocated for supporting their professional growth and augmenting their current roles without replacing them. They also identified affordances and challenges around classroom integration, including resource requirements and constraints, ethical concerns, and potential immediate and long-term impacts. Drawing on these, we propose design guidelines for future deployment of LLM tools in PBL.


The Dataset Nutrition Label (2nd Gen): Leveraging Context to Mitigate Harms in Artificial Intelligence

arXiv.org Artificial Intelligence

As the production of and reliance on datasets to produce automated decision-making systems (ADS) increases, so does the need for processes for evaluating and interrogating the underlying data. After launching the Dataset Nutrition Label in 2018, the Data Nutrition Project has made significant updates to the design and purpose of the Label, and is launching an updated Label in late 2020, which is previewed in this paper. The new Label includes context-specific Use Cases &Alerts presented through an updated design and user interface targeted towards the data scientist profile. This paper discusses the harm and bias from underlying training data that the Label is intended to mitigate, the current state of the work including new datasets being labeled, new and existing challenges, and further directions of the work, as well as Figures previewing the new label.