Taylor, Amelia
Using Machine Learning to Detect Fraudulent SMSs in Chichewa
Taylor, Amelia, Robert, Amoss
SMS enabled fraud is of great concern globally. Building classifiers based on machine learning for SMS fraud requires the use of suitable datasets for model training and validation. Most research has centred on the use of datasets of SMSs in English. This paper introduces a first dataset for SMS fraud detection in Chichewa, a major language in Africa, and reports on experiments with machine learning algorithms for classifying SMSs in Chichewa as fraud or non-fraud. We answer the broader research question of how feasible it is to develop machine learning classification models for Chichewa SMSs. To do that, we created three datasets. A small dataset of SMS in Chichewa was collected through primary research from a segment of the young population. We applied a label-preserving text transformations to increase its size. The enlarged dataset was translated into English using two approaches: human translation and machine translation. The Chichewa and the translated datasets were subjected to machine classification using random forest and logistic regression. Our findings indicate that both models achieved a promising accuracy of over 96% on the Chichewa dataset. There was a drop in performance when moving from the Chichewa to the translated dataset. This highlights the importance of data preprocessing, especially in multilingual or cross-lingual NLP tasks, and shows the challenges of relying on machine-translated text for training machine learning models. Our results underscore the importance of developing language specific models for SMS fraud detection to optimise accuracy and performance. Since most machine learning models require data preprocessing, it is essential to investigate the impact of the reliance on English-specific tools for data preprocessing.
MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages
Dione, Cheikh M. Bamba, Adelani, David, Nabende, Peter, Alabi, Jesujoba, Sindane, Thapelo, Buzaaba, Happy, Muhammad, Shamsuddeen Hassan, Emezue, Chris Chinenye, Ogayo, Perez, Aremu, Anuoluwapo, Gitau, Catherine, Mbaye, Derguene, Mukiibi, Jonathan, Sibanda, Blessing, Dossou, Bonaventure F. P., Bukula, Andiswa, Mabuya, Rooweither, Tapo, Allahsera Auguste, Munkoh-Buabeng, Edwin, Koagne, victoire Memdjokam, Kabore, Fatoumata Ouoba, Taylor, Amelia, Kalipe, Godson, Macucwa, Tebogo, Marivate, Vukosi, Gwadabe, Tajuddeen, Elvis, Mboning Tchiaze, Onyenwe, Ikechukwu, Atindogbe, Gratien, Adelani, Tolulope, Akinade, Idris, Samuel, Olanrewaju, Nahimana, Marien, Musabeyezu, Thรฉogรจne, Niyomutabazi, Emile, Chimhenga, Ester, Gotosa, Kudzai, Mizha, Patrick, Agbolo, Apelete, Traore, Seydou, Uchechukwu, Chinedu, Yusuf, Aliyu, Abdullahi, Muhammad, Klakow, Dietrich
In this paper, we present MasakhaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the UD (universal dependencies) guidelines. We conducted extensive POS baseline experiments using conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in UD. Evaluating on the MasakhaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with cross-lingual parameter-efficient fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems more effective for POS tagging in unseen languages.
MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition
Adelani, David Ifeoluwa, Neubig, Graham, Ruder, Sebastian, Rijhwani, Shruti, Beukman, Michael, Palen-Michel, Chester, Lignos, Constantine, Alabi, Jesujoba O., Muhammad, Shamsuddeen H., Nabende, Peter, Dione, Cheikh M. Bamba, Bukula, Andiswa, Mabuya, Rooweither, Dossou, Bonaventure F. P., Sibanda, Blessing, Buzaaba, Happy, Mukiibi, Jonathan, Kalipe, Godson, Mbaye, Derguene, Taylor, Amelia, Kabore, Fatoumata, Emezue, Chris Chinenye, Aremu, Anuoluwapo, Ogayo, Perez, Gitau, Catherine, Munkoh-Buabeng, Edwin, Koagne, Victoire M., Tapo, Allahsera Auguste, Macucwa, Tebogo, Marivate, Vukosi, Mboning, Elvis, Gwadabe, Tajuddeen, Adewumi, Tosin, Ahia, Orevaoghene, Nakatumba-Nabende, Joyce, Mokono, Neo L., Ezeani, Ignatius, Chukwuneke, Chiamaka, Adeyemi, Mofetoluwa, Hacheme, Gilles Q., Abdulmumin, Idris, Ogundepo, Odunayo, Yousuf, Oreen, Ngoli, Tatiana Moteu, Klakow, Dietrich
African languages are spoken by over a billion people, but are underrepresented in NLP research and development. The challenges impeding progress include the limited availability of annotated datasets, as well as a lack of understanding of the settings where current methods are effective. In this paper, we make progress towards solutions for these challenges, focusing on the task of named entity recognition (NER). We create the largest human-annotated NER dataset for 20 African languages, and we study the behavior of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, demonstrating that the choice of source language significantly affects performance. We show that choosing the best transfer language improves zero-shot F1 scores by an average of 14 points across 20 languages compared to using English. Our results highlight the need for benchmark datasets and models that cover typologically-diverse African languages.