Goto

Collaborating Authors

 Tavares, Anderson R.


Python Agent in Ludii

arXiv.org Artificial Intelligence

Ludii is a Java general game system with a considerable number of board games, with an API for developing new agents and a game description language to create new games. To improve versatility and ease development, we provide Python interfaces for agent programming. This allows the use of Python modules to implement general game playing agents. As a means of enabling Python for creating Ludii agents, the interfaces are implemented using different Java libraries: jpy and Py4J. The main goal of this work is to determine which version is faster. To do so, we conducted a performance analysis of two different GGP algorithms, Minimax adapted to GGP and MCTS. The analysis was performed across several combinatorial games with varying depth, branching factor, and ply time. For reproducibility, we provide tutorials and repositories. Our analysis includes predictive models using regression, which suggest that jpy is faster than Py4J, however slower than a native Java Ludii agent, as expected.


On the Evolution of A.I. and Machine Learning: Towards a Meta-level Measuring and Understanding Impact, Influence, and Leadership at Premier A.I. Conferences

arXiv.org Artificial Intelligence

Artificial Intelligence is now recognized as a general-purpose technology with ample impact on human life. This work aims at understanding the evolution of AI and, in particular Machine learning, from the perspective of researchers' contributions to the field. In order to do so, we present several measures allowing the analyses of AI and machine learning researchers' impact, influence, and leadership over the last decades. This work also contributes, to a certain extent, to shed new light on the history and evolution of AI by exploring the dynamics involved in the field's evolution by looking at papers published at the flagship AI and machine learning conferences since the first International Joint Conference on Artificial Intelligence (IJCAI) held in 1969. AI development and evolution have led to increasing research output, reflected in the number of articles published over the last sixty years. We construct comprehensive citation collaboration and paper-author datasets and compute corresponding centrality measures to carry out our analyses. These analyses allow a better understanding of how AI has reached its current state of affairs in research. Throughout the process, we correlate these datasets with the work of the ACM Turing Award winners and the so-called two AI winters the field has gone through. We also look at self-citation trends and new authors' behaviors. Finally, we present a novel way to infer the country of affiliation of a paper from its organization. Therefore, this work provides a deep analysis of Artificial Intelligence history from information gathered and analysed from large technical venues datasets and suggests novel insights that can contribute to understanding and measuring AI's evolution.


"A Nova Eletricidade: Aplica\c{c}\~oes, Riscos e Tend\^encias da IA Moderna -- "The New Electricity": Applications, Risks, and Trends in Current AI

arXiv.org Artificial Intelligence

The thought-provoking analogy between AI and electricity, made by computer scientist and entrepreneur Andrew Ng, summarizes the deep transformation that recent advances in Artificial Intelligence (AI) have triggered in the world. This chapter presents an overview of the ever-evolving landscape of AI, written in Portuguese. With no intent to exhaust the subject, we explore the AI applications that are redefining sectors of the economy, impacting society and humanity. We analyze the risks that may come along with rapid technological progress and future trends in AI, an area that is on the path to becoming a general-purpose technology, just like electricity, which revolutionized society in the 19th and 20th centuries. A provocativa compara\c{c}\~ao entre IA e eletricidade, feita pelo cientista da computa\c{c}\~ao e empreendedor Andrew Ng, resume a profunda transforma\c{c}\~ao que os recentes avan\c{c}os em Intelig\^encia Artificial (IA) t\^em desencadeado no mundo. Este cap\'itulo apresenta uma vis\~ao geral pela paisagem em constante evolu\c{c}\~ao da IA. Sem pretens\~oes de exaurir o assunto, exploramos as aplica\c{c}\~oes que est\~ao redefinindo setores da economia, impactando a sociedade e a humanidade. Analisamos os riscos que acompanham o r\'apido progresso tecnol\'ogico e as tend\^encias futuras da IA, \'area que trilha o caminho para se tornar uma tecnologia de prop\'osito geral, assim como a eletricidade, que revolucionou a sociedade dos s\'eculos XIX e XX.


Measuring Ethics in AI with AI: A Methodology and Dataset Construction

arXiv.org Artificial Intelligence

Recently, the use of sound measures and metrics in Artificial Intelligence has become the subject of interest of academia, government, and industry. Efforts towards measuring different phenomena have gained traction in the AI community, as illustrated by the publication of several influential field reports and policy documents. These metrics are designed to help decision takers to inform themselves about the fast-moving and impacting influences of key advances in Artificial Intelligence in general and Machine Learning in particular. In this paper we propose to use such newfound capabilities of AI technologies to augment our AI measuring capabilities. We do so by training a model to classify publications related to ethical issues and concerns. In our methodology we use an expert, manually curated dataset as the training set and then evaluate a large set of research papers. Finally, we highlight the implications of AI metrics, in particular their contribution towards developing trustful and fair AI-based tools and technologies. Keywords: AI Ethics; AI Fairness; AI Measurement. Ethics in Computer Science.


Understanding Boolean Function Learnability on Deep Neural Networks

arXiv.org Machine Learning

Computational learning theory states that many classes of boolean formulas are learnable in polynomial time. This paper addresses the understudied subject of how, in practice, such formulas can be learned by deep neural networks. Specifically, we analyse boolean formulas associated with the decision version of combinatorial optimisation problems, model sampling benchmarks, and random 3-CNFs with varying degrees of constrainedness. Our extensive experiments indicate that: (i) regardless of the combinatorial optimisation problem, relatively small and shallow neural networks are very good approximators of the associated formulas; (ii) smaller formulas seem harder to learn, possibly due to the fewer positive (satisfying) examples available; and (iii) interestingly, underconstrained 3-CNF formulas are more challenging to learn than overconstrained ones. Source code and relevant datasets are publicly available (https://github.com/machine-reasoning-ufrgs/mlbf).