Tatsubori, Michiaki
GenAIOps for GenAI Model-Agility
Ueno, Ken, Kogo, Makoto, Kawatsu, Hiromi, Uchiumi, Yohsuke, Tatsubori, Michiaki
AI-agility, with which an organization can be quickly adapted to its business priorities, is desired even for the development and operations of generative AI (GenAI) applications. Especially in this paper, we discuss so-called GenAI Model-agility, which we define as the readiness to be flexibly adapted to base foundation models as diverse as the model providers and versions. First, for handling issues specific to generative AI, we first define a methodology of GenAI application development and operations, as GenAIOps, to identify the problem of application quality degradation caused by changes to the underlying foundation models. We study prompt tuning technologies, which look promising to address this problem, and discuss their effectiveness and limitations through case studies using existing tools.
Matching of Descriptive Labels to Glossary Descriptions
Takahashi, Toshihiro, Tateishi, Takaaki, Tatsubori, Michiaki
Semantic text similarity plays an important role in software engineering tasks in which engineers are requested to clarify the semantics of descriptive labels (e.g., business terms, table column names) that are often consists of too short or too generic words and appears in their IT systems. We formulate this type of problem as a task of matching descriptive labels to glossary descriptions. We then propose a framework to leverage an existing semantic text similarity measurement (STS) and augment it using semantic label enrichment and set-based collective contextualization where the former is a method to retrieve sentences relevant to a given label and the latter is a method to compute similarity between two contexts each of which is derived from a set of texts (e.g., column names in the same table). We performed an experiment on two datasets derived from publicly available data sources. The result indicated that the proposed methods helped the underlying STS correctly match more descriptive labels with the descriptions.
Learning Symbolic Rules over Abstract Meaning Representations for Textual Reinforcement Learning
Chaudhury, Subhajit, Swaminathan, Sarathkrishna, Kimura, Daiki, Sen, Prithviraj, Murugesan, Keerthiram, Uceda-Sosa, Rosario, Tatsubori, Michiaki, Fokoue, Achille, Kapanipathi, Pavan, Munawar, Asim, Gray, Alexander
Text-based reinforcement learning agents have predominantly been neural network-based models with embeddings-based representation, learning uninterpretable policies that often do not generalize well to unseen games. On the other hand, neuro-symbolic methods, specifically those that leverage an intermediate formal representation, are gaining significant attention in language understanding tasks. This is because of their advantages ranging from inherent interpretability, the lesser requirement of training data, and being generalizable in scenarios with unseen data. Therefore, in this paper, we propose a modular, NEuro-Symbolic Textual Agent (NESTA) that combines a generic semantic parser with a rule induction system to learn abstract interpretable rules as policies. Our experiments on established text-based game benchmarks show that the proposed NESTA method outperforms deep reinforcement learning-based techniques by achieving better generalization to unseen test games and learning from fewer training interactions.
Utterance Classification with Logical Neural Network: Explainable AI for Mental Disorder Diagnosis
Toleubay, Yeldar, Agravante, Don Joven, Kimura, Daiki, Lin, Baihan, Bouneffouf, Djallel, Tatsubori, Michiaki
In response to the global challenge of mental health problems, we proposes a Logical Neural Network (LNN) based Neuro-Symbolic AI method for the diagnosis of mental disorders. Due to the lack of effective therapy coverage for mental disorders, there is a need for an AI solution that can assist therapists with the diagnosis. However, current Neural Network models lack explainability and may not be trusted by therapists. The LNN is a Recurrent Neural Network architecture that combines the learning capabilities of neural networks with the reasoning capabilities of classical logic-based AI. The proposed system uses input predicates from clinical interviews to output a mental disorder class, and different predicate pruning techniques are used to achieve scalability and higher scores. In addition, we provide an insight extraction method to aid therapists with their diagnosis. The proposed system addresses the lack of explainability of current Neural Network models and provides a more trustworthy solution for mental disorder diagnosis.
DiffG-RL: Leveraging Difference between State and Common Sense
Tanaka, Tsunehiko, Kimura, Daiki, Tatsubori, Michiaki
Taking into account background knowledge as the context has always been an important part of solving tasks that involve natural language. One representative example of such tasks is text-based games, where players need to make decisions based on both description text previously shown in the game, and their own background knowledge about the language and common sense. In this work, we investigate not simply giving common sense, as can be seen in prior research, but also its effective usage. We assume that a part of the environment states different from common sense should constitute one of the grounds for action selection. We propose a novel agent, DiffG-RL, which constructs a Difference Graph that organizes the environment states and common sense by means of interactive objects with a dedicated graph encoder. DiffG-RL also contains a framework for extracting the appropriate amount and representation of common sense from the source to support the construction of the graph. We validate DiffG-RL in experiments with text-based games that require common sense and show that it outperforms baselines by 17% of scores. The code is available at https://github.com/ibm/diffg-rl
Neuro-Symbolic Reinforcement Learning with First-Order Logic
Kimura, Daiki, Ono, Masaki, Chaudhury, Subhajit, Kohita, Ryosuke, Wachi, Akifumi, Agravante, Don Joven, Tatsubori, Michiaki, Munawar, Asim, Gray, Alexander
Deep reinforcement learning (RL) methods often require many trials before convergence, and no direct interpretability of trained policies is provided. In order to achieve fast convergence and interpretability for the policy in RL, we propose a novel RL method for text-based games with a recent neuro-symbolic framework called Logical Neural Network, which can learn symbolic and interpretable rules in their differentiable network. The method is first to extract first-order logical facts from text observation and external word meaning network (ConceptNet), then train a policy in the network with directly interpretable logical operators. Our experimental results show RL training with the proposed method converges significantly faster than other state-of-the-art neuro-symbolic methods in a TextWorld benchmark.
Reinforcement Learning with External Knowledge by using Logical Neural Networks
Kimura, Daiki, Chaudhury, Subhajit, Wachi, Akifumi, Kohita, Ryosuke, Munawar, Asim, Tatsubori, Michiaki, Gray, Alexander
Conventional deep reinforcement learning methods are sample-inefficient and usually require a large number of training trials before convergence. Since such methods operate on an unconstrained action set, they can lead to useless actions. A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic. The LNNs functions as an end-to-end differentiable network that minimizes a novel contradiction loss to learn interpretable rules. In this paper, we utilize LNNs to define an inference graph using basic logical operations, such as AND and NOT, for faster convergence in reinforcement learning. Specifically, we propose an integrated method that enables model-free reinforcement learning from external knowledge sources in an LNNs-based logical constrained framework such as action shielding and guide. Our results empirically demonstrate that our method converges faster compared to a model-free reinforcement learning method that doesn't have such logical constraints.
Bootstrapped Q-learning with Context Relevant Observation Pruning to Generalize in Text-based Games
Chaudhury, Subhajit, Kimura, Daiki, Talamadupula, Kartik, Tatsubori, Michiaki, Munawar, Asim, Tachibana, Ryuki
We show that Reinforcement Learning (RL) methods for solving Text-Based Games (TBGs) often fail to generalize on unseen games, especially in small data regimes. To address this issue, we propose Context Relevant Episodic State Truncation (CREST) for irrelevant token removal in observation text for improved generalization. Our method first trains a base model using Q-learning, which typically overfits the training games. The base model's action token distribution is used to perform observation pruning that removes irrelevant tokens. A second bootstrapped model is then retrained on the pruned observation text. Our bootstrapped agent shows improved generalization in solving unseen TextWorld games, using 10x-20x fewer training games compared to previous state-of-the-art methods despite requiring less number of training episodes.